
perlmod - Perl modules (packages and symbol tables)

Perl provides a mechanism for alternative namespaces to protect packages from stomping on each
other's variables. In fact, there's really no such thing as a global variable in Perl. The package
statement declares the compilation unit as being in the given namespace. The scope of the package
declaration is from the declaration itself through the end of the enclosing block, , or file,
whichever comes first (the same scope as the my() and local() operators). Unqualified dynamic
identifiers will be in this namespace, except for those few identifiers that if unqualified, default to the
main package instead of the current one as described below. A package statement affects only
dynamic variables--including those you've used local() on--but lexical variables created with my().
Typically it would be the first declaration in a file included by the , , or operators. You
can switch into a package in more than one place; it merely influences which symbol table is used by
the compiler for the rest of that block. You can refer to variables and filehandles in other packages by
prefixing the identifier with the package name and a double colon: . If the
package name is null, the package is assumed. That is, is equivalent to

.

The old package delimiter was a single quote, but double colon is now the preferred delimiter, in part
because it's more readable to humans, and in part because it's more readable to macros. It
also makes C++ programmers feel like they know what's going on--as opposed to using the single
quote as separator, which was there to make Ada programmers feel like they knew what was going
on. Because the old-fashioned syntax is still supported for backwards compatibility, if you try to use a
string like , you'll be accessing ; that is, the $s variable in
package , which is probably not what you meant. Use braces to disambiguate, as in

.

Packages may themselves contain package separators, as in . This implies
nothing about the order of name lookups, however. There are no relative packages: all symbols are
either local to the current package, or must be fully qualified from the outer package name down. For
instance, there is nowhere within package that refers to

. refers to a totally separate global package.

Only identifiers starting with letters (or underscore) are stored in a package's symbol table. All other
symbols are kept in package , including all punctuation variables, like $_. In addition, when
unqualified, the identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC, and SIG are
forced to be in package , even when used for other purposes than their built-in ones. If you have
a package called , , or , then you can't use the qualified form of an identifier because it would be
instead interpreted as a pattern match, a substitution, or a transliteration.

Variables beginning with underscore used to be forced into package main, but we decided it was
more useful for package writers to be able to use leading underscore to indicate private variables and
method names. However, variables and functions named with a single , such as $_ and , are
still forced into the package . See also

.

ed strings are compiled in the package in which the eval() was compiled. (Assignments to
, however, assume the signal handler specified is in the package. Qualify the signal

handler name if you wish to have a signal handler in a package.) For an example, examine
in the Perl library. It initially switches to the package so that the debugger doesn't interfere with
variables in the program you are trying to debug. At various points, however, it temporarily switches
back to the package to evaluate various expressions in the context of the package (or
wherever you came from). See .

The special symbol contains the current package, but cannot (easily) be used to

Perl version 5.8.6 documentation - perlmod

Page 1http://perldoc.perl.org

NAME

DESCRIPTION
Packages

eval

do require use

$Package::Variable
main $::sail

$main::sail

"This is $owner’s house" $owner::s
owner "This is

${owner}’s house"

$OUTER::INNER::var

OUTER $INNER::var
$OUTER::INNER::var INNER

main

main
m s y

_ sub _
main

eval
$SIG{} main

DB

main main

__PACKAGE__

not

"Technical Note on the Syntax of Variable Names" in
perlvar

perldb.pl

perldebug

emacs

construct variable names.

See for other scoping issues related to my() and local(), and regarding closures.

The symbol table for a package happens to be stored in the hash of that name with two colons
appended. The main symbol table's name is thus , or for short. Likewise the symbol
table for the nested package mentioned earlier is named .

The value in each entry of the hash is what you are referring to when you use the typeglob
notation. In fact, the following have the same effect, though the first is more efficient because it does
the symbol table lookups at compile time:

(Be sure to note the difference between the second line above and
. The former is accessing the hash , which is the symbol table of package

. The latter is simply assigning scalar in package to scalar of the same
package.)

You can use this to print out all the variables in a package, for instance. The standard but antiquated
library and the CPAN module Devel::Symdump make use of this.

Assignment to a typeglob performs an aliasing operation, i.e.,

causes variables, subroutines, formats, and file and directory handles accessible via the identifier
also to be accessible via the identifier . If you want to alias only a particular variable or

subroutine, assign a reference instead:

Which makes $richard and $dick the same variable, but leaves @richard and @dick as separate
arrays. Tricky, eh?

There is one subtle difference between the following statements:

makes the typeglobs themselves synonymous while makes the
SCALAR portions of two distinct typeglobs refer to the same scalar value. This means that the
following code:

Would print '1', because holds a reference to the -- the one that was stuffed away
by and which will be restored when the block ends. Because variables are accessed
through the typeglob, you can use to create an alias which can be localized. (But be

Perl version 5.8.6 documentation - perlmod

Page 2http://perldoc.perl.org

perlsub perlref

dumpvar.pl

original

Symbol Tables

%main:: %::
%OUTER::INNER::

*name

local $main::foo =
$main::bar %main::
main $bar main $foo

richard dick

*foo = *bar *foo = \$bar

$foo $bar
local()

*foo = *bar

local *main::foo = *main::bar;
local $main::{foo} = $main::{bar};

*dick = *richard;

*dick = \$richard;

*foo = *bar;
*foo = \$bar;

$bar = 1;
*foo = \$bar; # Make $foo an alias for $bar

{
local $bar = 2; # Restrict changes to block
print $foo; # Prints ’1’!

}

vast

aware that this means you can't have a separate and , etc.)

What makes all of this important is that the Exporter module uses glob aliasing as the import/export
mechanism. Whether or not you can properly localize a variable that has been exported from a
module depends on how it was exported:

You can work around the first case by using the fully qualified name () where you
need a local value, or by overriding it by saying in your script.

The mechanism may be used to pass and return cheap references into or from
subroutines if you don't want to copy the whole thing. It only works when assigning to dynamic
variables, not lexicals.

On return, the reference will overwrite the hash slot in the symbol table specified by the *some_hash
typeglob. This is a somewhat tricky way of passing around references cheaply when you don't want to
have to remember to dereference variables explicitly.

Another use of symbol tables is for making "constant" scalars.

Now you cannot alter , which is probably a good thing all in all. This isn't the same as a constant
subroutine, which is subject to optimization at compile-time. A constant subroutine is one prototyped
to take no arguments and to return a constant expression. See for details on these. The

pragma is a convenient shorthand for these.

You can say and to find out what name and package the *foo symbol
table entry comes from. This may be useful in a subroutine that gets passed typeglobs as arguments:

This prints

The notation can also be used to obtain references to the individual elements of *foo.
See .

Perl version 5.8.6 documentation - perlmod

Page 3http://perldoc.perl.org

@foo @bar

$Package::FOO
*FOO = *Package::FOO

*x = \$y

$PI

use
constant

*foo{PACKAGE} *foo{NAME}

*foo{THING}

@EXPORT = qw($FOO); # Usual form, can’t be localized
@EXPORT = qw(*FOO); # Can be localized

%some_hash = (); # can’t be my()
*some_hash = fn(\%another_hash);
sub fn {

local *hashsym = shift;
now use %hashsym normally, and you
will affect the caller’s %another_hash
my %nhash = (); # do what you want
return \%nhash;

}

*PI = \3.14159265358979;

sub identify_typeglob {
my $glob = shift;
print ’You gave me ’, *{$glob}{PACKAGE}, ’::’, *{$glob}{NAME},

"\n";
}
identify_typeglob *foo;
identify_typeglob *bar::baz;

You gave me main::foo
You gave me bar::baz

perlsub

perlref

Subroutine definitions (and declarations, for that matter) need not necessarily be situated in the
package whose symbol table they occupy. You can define a subroutine outside its package by
explicitly qualifying the name of the subroutine:

This is just a shorthand for a typeglob assignment at compile time:

and is the same as writing:

In the first two versions, the body of the subroutine is lexically in the main package, in
Some_package. So something like this:

prints:

rather than:

This also has implications for the use of the SUPER:: qualifier (see).

Four specially named code blocks are executed at the beginning and at the end of a running Perl
program. These are the , , , and blocks.

These code blocks can be prefixed with to give the appearance of a subroutine (although this is
not considered good style). One should note that these code blocks don't really exist as named
subroutines (despite their appearance). The thing that gives this away is the fact that you can have

of these code blocks in a program, and they will get executed at the appropriate
moment. So you can't execute any of these code blocks by name.

A code block is executed as soon as possible, that is, the moment it is completely defined,
even before the rest of the containing file (or string) is parsed. You may have multiple blocks
within a file (or eval'ed string) -- they will execute in order of definition. Because a code block
executes immediately, it can pull in definitions of subroutines and such from other files in time to be

Perl version 5.8.6 documentation - perlmod

Page 4http://perldoc.perl.org

package main;
sub Some_package::foo { ... } # &foo defined in Some_package

BEGIN { *Some_package::foo = sub { ... } }

{
package Some_package;
sub foo { ... }

}

package main;

$Some_package::name = "fred";
$main::name = "barney";

sub Some_package::foo {
print "in ", __PACKAGE__, ": \$name is ’$name’\n";

}

Some_package::foo();

in main: $name is ’barney’

in Some_package: $name is ’fred’

not

not

perlobj

BEGIN, CHECK, INIT and END

BEGIN CHECK INIT END

sub

BEGIN
BEGIN

BEGIN

more than one all

visible to the rest of the compile and run time. Once a has run, it is immediately undefined and
any code it used is returned to Perl's memory pool.

It should be noted that code blocks executed inside string 's. The and
code blocks are executed inside a string eval, which e.g. can be a problem in a mod_perl

environment.

An code block is executed as late as possible, that is, after perl has finished running the program
and just before the interpreter is being exited, even if it is exiting as a result of a die() function. (But
not if it's polymorphing into another program via , or being blown out of the water by a
signal--you have to trap that yourself (if you can).) You may have multiple blocks within a
file--they will execute in reverse order of definition; that is: last in, first out (LIFO). blocks are not
executed when you run perl with the switch, or if compilation fails.

Note that code blocks are executed at the end of a string : if any code blocks
are created in a string , they will be executed just as any other code block of that
package in LIFO order just before the interpreter is being exited.

Inside an code block, contains the value that the program is going to pass to . You
can modify to change the exit value of the program. Beware of changing by accident (e.g. by
running something via).

and code blocks are useful to catch the transition between the compilation phase and
the execution phase of the main program.

code blocks are run just after the Perl compile phase ends and before the run time
begins, in LIFO order. code blocks are used in the Perl compiler suite to save the compiled
state of the program.

blocks are run just before the Perl runtime begins execution, in "first in, first out" (FIFO) order.
For example, the code generators documented in make use of blocks to initialize and
resolve pointers to XSUBs.

When you use the and switches to Perl, and work just as they do in , as a
degenerate case. Both and blocks are run when you use the switch for a
compile-only syntax check, although your main code is not.

The program makes it all clear, eventually:

Perl version 5.8.6 documentation - perlmod

Page 5http://perldoc.perl.org

BEGIN

BEGIN eval() CHECK
INIT

END

exec
END

END
-c

END eval() END
eval() END

END $? exit()
$? $?

system

CHECK INIT

CHECK
CHECK

INIT
INIT

BEGIN END
BEGIN CHECK

are
not

not

initial

-n -p awk
-c

begincheck

perlcc

#!/usr/bin/perl

begincheck

print " 8. Ordinary code runs at runtime.\n";

END { print "14. So this is the end of the tale.\n" }
INIT { print " 5. INIT blocks run FIFO just before runtime.\n" }
CHECK { print " 4. So this is the fourth line.\n" }

print " 9. It runs in order, of course.\n";

BEGIN { print " 1. BEGIN blocks run FIFO during compilation.\n" }
END { print "13. Read perlmod for the rest of the story.\n" }
CHECK { print " 3. CHECK blocks run LIFO at compilation’s end.\n" }
INIT { print " 6. Run this again, using Perl’s -c switch.\n" }

print "10. This is anti-obfuscated code.\n";

There is no special class syntax in Perl, but a package may act as a class if it provides subroutines to
act as methods. Such a package may also derive some of its methods from another class (package)
by listing the other package name(s) in its global @ISA array (which must be a package global, not a
lexical).

For more on this, see and .

A module is just a set of related functions in a library file, i.e., a Perl package with the same name as
the file. It is specifically designed to be reusable by other modules or programs. It may do this by
providing a mechanism for exporting some of its symbols into the symbol table of any package using
it, or it may function as a class definition and make its semantics available implicitly through method
calls on the class and its objects, without explicitly exporting anything. Or it can do a little of both.

For example, to start a traditional, non-OO module called Some::Module, create a file called
and start with this template:

Perl version 5.8.6 documentation - perlmod

Page 6http://perldoc.perl.org

END { print "12. END blocks run LIFO at quitting time.\n" }
BEGIN { print " 2. So this line comes out second.\n" }
INIT { print " 7. You’ll see the difference right away.\n" }

print "11. It merely _looks_ like it should be confusing.\n";

__END__

package Some::Module; # assumes Some/Module.pm

use strict;
use warnings;

BEGIN {
use Exporter ();
our ($VERSION, @ISA, @EXPORT, @EXPORT_OK, %EXPORT_TAGS);

set the version for version checking
$VERSION = 1.00;
if using RCS/CVS, this may be preferred
$VERSION = sprintf "%d.%03d", q$Revision: 1.1 $ =~ /(\d+)/g;

@ISA = qw(Exporter);
@EXPORT = qw(&func1 &func2 &func4);
%EXPORT_TAGS = (); # eg: TAG => [qw!name1 name2!],

your exported package globals go here,
as well as any optionally exported functions
@EXPORT_OK = qw($Var1 %Hashit &func3);

}
our @EXPORT_OK;

exported package globals go here
our $Var1;
our %Hashit;

Perl Classes

Perl Modules

perltoot perlobj

Some/Module.pm

Then go on to declare and use your variables in functions without any qualifications. See
and the for details on mechanics and style issues in module creation.

Perl modules are included into your program by saying

or

This is exactly equivalent to

Perl version 5.8.6 documentation - perlmod

Page 7http://perldoc.perl.org

non-exported package globals go here
our @more;
our $stuff;

initialize package globals, first exported ones
$Var1 = ’’;
%Hashit = ();

then the others (which are still accessible as $Some::Module::stuff)
$stuff = ’’;
@more = ();

all file-scoped lexicals must be created before
the functions below that use them.

file-private lexicals go here
my $priv_var = ’’;
my %secret_hash = ();

here’s a file-private function as a closure,
callable as &$priv_func; it cannot be prototyped.
my $priv_func = sub {

stuff goes here.
};

make all your functions, whether exported or not;
remember to put something interesting in the {} stubs
sub func1 {} # no prototype
sub func2() {} # proto’d void
sub func3($$) {} # proto’d to 2 scalars

this one isn’t exported, but could be called!
sub func4(\%) {} # proto’d to 1 hash ref

END { } # module clean-up code here (global destructor)

YOUR CODE GOES HERE

1; # don’t forget to return a true value from the file

use Module;

use Module LIST;

Exporter
perlmodlib

or

As a special case

is exactly equivalent to

All Perl module files have the extension . The operator assumes this so you don't have to
spell out " " in quotes. This also helps to differentiate new modules from old and
files. Module names are also capitalized unless they're functioning as pragmas; pragmas are in effect
compiler directives, and are sometimes called "pragmatic modules" (or even "pragmata" if you're a
classicist).

The two statements:

differ from each other in two ways. In the first case, any double colons in the module name, such as
, are translated into your system's directory separator, usually "/". The second case

does not, and would have to be specified literally. The other difference is that seeing the first
clues in the compiler that uses of indirect object notation involving "SomeModule", as in

, are method calls, not function calls. (Yes, this really can make a
difference.)

Because the statement implies a block, the importing of semantics happens as soon as
the statement is compiled, before the rest of the file is compiled. This is how it is able to function
as a pragma mechanism, and also how modules are able to declare subroutines that are then visible
as list or unary operators for the rest of the current file. This will not work if you use instead
of . With you can get into this problem:

In general, is recommended over , because it determines
module availability at compile time, not in the middle of your program's execution. An exception would
be if two modules each tried to each other, and each also called a function from that other
module. In that case, it's easy to use instead.

Perl packages may be nested inside other package names, so we can have package names
containing . But if we used that package name directly as a filename it would make for unwieldy or
impossible filenames on some systems. Therefore, if a module's name is, say, ,
then its definition is actually found in the library file .

Perl version 5.8.6 documentation - perlmod

Page 8http://perldoc.perl.org

BEGIN { require Module; import Module; }

BEGIN { require Module; import Module LIST; }

use Module ();

BEGIN { require Module; }

require SomeModule;
require "SomeModule.pm";

require Cwd; # make Cwd:: accessible
$here = Cwd::getcwd();

use Cwd; # import names from Cwd::
$here = getcwd();

require Cwd; # make Cwd:: accessible
$here = getcwd(); # oops! no main::getcwd()

.pm
Module.pm .pl .ph

Text/Soundex.pm

use

Some::Module

require
$ob = purge SomeModule

use BEGIN
use

require
use require

use Module () require Module

use
require

::
Text::Soundex

Perl modules always have a file, but there may also be dynamically linked executables (often
ending in) or autoloaded subroutine definitions (often ending in) associated with the module. If
so, these will be entirely transparent to the user of the module. It is the responsibility of the file to
load (or arrange to autoload) any additional functionality. For example, although the POSIX module
happens to do both dynamic loading and autoloading, the user can say just to get it all.

Since 5.6.0, Perl has had support for a new type of threads called interpreter threads (ithreads).
These threads can be used explicitly and implicitly.

Ithreads work by cloning the data tree so that no data is shared between different threads. These
threads can be used by using the module or by doing fork() on win32 (fake fork() support).
When a thread is cloned all Perl data is cloned, however non-Perl data cannot be cloned
automatically. Perl after 5.7.2 has support for the special subroutine. In you can do
whatever you need to do, like for example handle the cloning of non-Perl data, if necessary.
will be called once as a class method for every package that has it defined (or inherits it). It will be
called in the context of the new thread, so all modifications are made in the new area. Currently
CLONE is called with no parameters other than the invocant package name, but code should not
assume that this will remain unchanged, as it is likely that in future extra parameters will be passed in
to give more information about the state of cloning.

If you want to CLONE all objects you will need to keep track of them per package. This is simply done
using a hash and Scalar::Util::weaken().

See for general style issues related to building Perl modules and classes, as well as
descriptions of the standard library and CPAN, for how Perl's standard import/export
mechanism works, and for an in-depth tutorial on creating classes, for a
hard-core reference document on objects, for an explanation of functions and scoping, and

and for more information on writing extension modules.

Perl version 5.8.6 documentation - perlmod

Page 9http://perldoc.perl.org

.pm
.so .al

.pm

perlmodlib
Exporter

perltoot perltooc perlobj
perlsub

perlxstut perlguts

use POSIX

threads

CLONE CLONE
CLONE

Making your module threadsafe

SEE ALSO

