
perllocale - Perl locale handling (internationalization and localization)

Perl supports language-specific notions of data such as "is this a letter", "what is the uppercase
equivalent of this letter", and "which of these letters comes first". These are important issues,
especially for languages other than English--but also for English: it would be naïve to imagine that

defines all the "letters" needed to write in English. Perl is also aware that some character
other than '.' may be preferred as a decimal point, and that output date representations may be
language-specific. The process of making an application take account of its users' preferences in
such matters is called (often abbreviated as); telling such an application
about a particular set of preferences is known as ().

Perl can understand language-specific data via the standardized (ISO C, XPG4, POSIX 1.c) method
called "the locale system". The locale system is controlled per application using one pragma, one
function call, and several environment variables.

: This feature is new in Perl 5.004, and does not apply unless an application specifically
requests it--see . The one exception is that write() now uses the
current locale - see .

If Perl applications are to understand and present your data correctly according a locale of your
choice, of the following must be true:

. If it does, you should find that the
setlocale() function is a documented part of its C library.

. You, or your system administrator,
must make sure that this is the case. The available locales, the location in which they are kept,
and the manner in which they are installed all vary from system to system. Some systems
provide only a few, hard-wired locales and do not allow more to be added. Others allow you to
add "canned" locales provided by the system supplier. Still others allow you or the system
administrator to define and add arbitrary locales. (You may have to ask your supplier to
provide canned locales that are not delivered with your operating system.) Read your system
documentation for further illumination.

. If it does,
will say that the value for is .

If you want a Perl application to process and present your data according to a particular locale, the
application code should include the pragma (see) where
appropriate, and of the following must be true:

at the time the application is started, either by yourself or by whoever set up your
system account.

using the method described in
.

By default, Perl ignores the current locale. The pragma tells Perl to use the current
locale for some operations:

(, , , , and) and the POSIX string collation
functions strcoll() and strxfrm() use . sort() is also affected if used without an

Perl version 5.8.6 documentation - perllocale

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

PREPARING TO USE LOCALES

USING LOCALES

A-Za-z

perl -V:d_setlocale
d_setlocale define

use locale

use locale

lt le cmp ge gt
LC_COLLATE

internationalization i18n
localization l10n

NOTE
always

all

Your operating system must support the locale system

Definitions for locales that you use must be installed

Perl must believe that the locale system is supported

at least one

The locale-determining environment variables (see) must be correctly
set up

The application must set its own locale

The comparison operators

Backward compatibility
NOTES

The use locale pragma

The setlocale
function

ENVIRONMENT

The use locale pragma

explicit comparison function, because it uses by default.

and are unaffected by locale: they always perform a char-by-char comparison of
their scalar operands. What's more, if finds that its operands are equal according to the
collation sequence specified by the current locale, it goes on to perform a char-by-char
comparison, and only returns (equal) if the operands are char-for-char identical. If you really
want to know whether two strings--which and may consider different--are equal as far
as collation in the locale is concerned, see the discussion in

.

(uc(), lc(), ucfirst(), and lcfirst()) use

(printf(), sprintf() and write()) use

(strftime()) uses .

, , and so on, are discussed further in .

The default behavior is restored with the pragma, or upon reaching the end of block
enclosing .

The string result of any operation that uses locale information is tainted, as it is possible for a locale to
be untrustworthy. See .

You can switch locales as often as you wish at run time with the POSIX::setlocale() function:

The first argument of setlocale() gives the , the second the . The category tells in what
aspect of data processing you want to apply locale-specific rules. Category names are discussed in

and . The locale is the name of a collection of customization
information corresponding to a particular combination of language, country or territory, and codeset.
Read on for hints on the naming of locales: not all systems name locales as in the example.

If no second argument is provided and the category is something else than LC_ALL, the function
returns a string naming the current locale for the category. You can use this value as the second

Perl version 5.8.6 documentation - perllocale

Page 2http://perldoc.perl.org

cmp

eq ne
cmp

eq cmp

LC_CTYPE

LC_NUMERIC

LC_TIME

LC_COLLATE LC_CTYPE

no locale
use locale

Note:

Regular expressions and case-modification functions

The formatting functions

The POSIX date formatting function

category locale

0

Category LC_COLLATE:
Collation

LOCALE CATEGORIES

SECURITY

LOCALE CATEGORIES ENVIRONMENT

The setlocale function

This functionality not usable prior to Perl 5.004
require 5.004;

Import locale-handling tool set from POSIX module.
This example uses: setlocale -- the function call
LC_CTYPE -- explained below
use POSIX qw(locale_h);

query and save the old locale
$old_locale = setlocale(LC_CTYPE);

setlocale(LC_CTYPE, "fr_CA.ISO8859-1");
LC_CTYPE now in locale "French, Canada, codeset ISO 8859-1"

setlocale(LC_CTYPE, "");
LC_CTYPE now reset to default defined by LC_ALL/LC_CTYPE/LANG
environment variables. See below for documentation.

restore the old locale
setlocale(LC_CTYPE, $old_locale);

argument in a subsequent call to setlocale().

If no second argument is provided and the category is LC_ALL, the result is
implementation-dependent. It may be a string of concatenated locales names (separator also
implementation-dependent) or a single locale name. Please consult your for details.

If a second argument is given and it corresponds to a valid locale, the locale for the category is set to
that value, and the function returns the now-current locale value. You can then use this in yet another
call to setlocale(). (In some implementations, the return value may sometimes differ from the value
you gave as the second argument--think of it as an alias for the value you gave.)

As the example shows, if the second argument is an empty string, the category's locale is returned to
the default specified by the corresponding environment variables. Generally, this results in a return to
the default that was in force when Perl started up: changes to the environment made by the
application after startup may or may not be noticed, depending on your system's C library.

If the second argument does not correspond to a valid locale, the locale for the category is not
changed, and the function returns .

For further information about the categories, consult .

For locales available in your system, consult also to see whether it leads to the list of
available locales (search for the section). If that fails, try the following command lines:

and see whether they list something resembling these

Sadly, even though the calling interface for setlocale() has been standardized, names of locales and
the directories where the configuration resides have not been. The basic form of the name is

, but the latter parts after are not always present. The
and are usually from the standards and , the two-letter abbreviations for the
countries and the languages of the world, respectively. The part often mentions some

character set, the Latin codesets. For example, is the so-called "Western
European codeset" that can be used to encode most Western European languages adequately.
Again, there are several ways to write even the name of that one standard. Lamentably.

Perl version 5.8.6 documentation - perllocale

Page 3http://perldoc.perl.org

setlocale(3)

undef

setlocale(3)

setlocale(3)
SEE ALSO

language_territory codeset language language
country

codeset

Finding locales

locale -a

nlsinfo

ls /usr/lib/nls/loc

ls /usr/lib/locale

ls /usr/lib/nls

ls /usr/share/locale

en_US.ISO8859-1 de_DE.ISO8859-1 ru_RU.ISO8859-5
en_US.iso88591 de_DE.iso88591 ru_RU.iso88595
en_US de_DE ru_RU
en de ru
english german russian
english.iso88591 german.iso88591 russian.iso88595
english.roman8 russian.koi8r

.
ISO 3166 ISO 639

ISO
8859 ISO 8859-1

Two special locales are worth particular mention: "C" and "POSIX". Currently these are effectively the
same locale: the difference is mainly that the first one is defined by the C standard, the second by the
POSIX standard. They define the in which every program starts in the absence of
locale information in its environment. (The default locale, if you will.) Its language is
(American) English and its character codeset ASCII.

: Not all systems have the "POSIX" locale (not all systems are POSIX-conformant), so use "C"
when you need explicitly to specify this default locale.

You may encounter the following warning message at Perl startup:

This means that your locale settings had LC_ALL set to "En_US" and LANG exists but has no value.
Perl tried to believe you but could not. Instead, Perl gave up and fell back to the "C" locale, the default
locale that is supposed to work no matter what. This usually means your locale settings were wrong,
they mention locales your system has never heard of, or the locale installation in your system has
problems (for example, some system files are broken or missing). There are quick and temporary
fixes to these problems, as well as more thorough and lasting fixes.

The two quickest fixes are either to render Perl silent about any locale inconsistencies or to run Perl
under the default locale "C".

Perl's moaning about locale problems can be silenced by setting the environment variable
PERL_BADLANG to a zero value, for example "0". This method really just sweeps the problem under
the carpet: you tell Perl to shut up even when Perl sees that something is wrong. Do not be surprised
if later something locale-dependent misbehaves.

Perl can be run under the "C" locale by setting the environment variable LC_ALL to "C". This method
is perhaps a bit more civilized than the PERL_BADLANG approach, but setting LC_ALL (or other
locale variables) may affect other programs as well, not just Perl. In particular, external programs run
from within Perl will see these changes. If you make the new settings permanent (read on), all
programs you run see the changes. See for the full list of relevant environment
variables and for their effects in Perl. Effects in other programs are easily
deducible. For example, the variable LC_COLLATE may well affect your program (or whatever
the program that arranges `records' alphabetically in your system is called).

You can test out changing these variables temporarily, and if the new settings seem to help, put those
settings into your shell startup files. Consult your local documentation for the exact details. For in
Bourne-like shells (, , ,):

This assumes that we saw the locale "en_US.ISO8859-1" using the commands discussed above. We
decided to try that instead of the above faulty locale "En_US"--and in Cshish shells (,)

or if you have the "env" application you can do in any shell

Perl version 5.8.6 documentation - perllocale

Page 4http://perldoc.perl.org

default locale

NOTE

sort

sh ksh bash zsh

csh tcsh

default

ENVIRONMENT
USING LOCALES

LOCALE PROBLEMS

Temporarily fixing locale problems

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:

LC_ALL = "En_US",
LANG = (unset)

are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

LC_ALL=en_US.ISO8859-1
export LC_ALL

setenv LC_ALL en_US.ISO8859-1

If you do not know what shell you have, consult your local helpdesk or the equivalent.

The slower but superior fixes are when you may be able to yourself fix the misconfiguration of your
own environment variables. The mis(sing)configuration of the whole system's locales usually requires
the help of your friendly system administrator.

First, see earlier in this document about . That tells how to find which locales are really
supported--and more importantly, installed--on your system. In our example error message,
environment variables affecting the locale are listed in the order of decreasing importance (and unset
variables do not matter). Therefore, having LC_ALL set to "En_US" must have been the bad choice,
as shown by the error message. First try fixing locale settings listed first.

Second, if using the listed commands you see something (prefix matches do not count and
case usually counts) like "En_US" without the quotes, then you should be okay because you are
using a locale name that should be installed and available in your system. In this case, see

.

This is when you see something like:

but then cannot see that "En_US" listed by the above-mentioned commands. You may see things like
"en_US.ISO8859-1", but that isn't the same. In this case, try running under a locale that you can list
and which somehow matches what you tried. The rules for matching locale names are a bit vague
because standardization is weak in this area. See again the about general rules.

Contact a system administrator (preferably your own) and report the exact error message you get,
and ask them to read this same documentation you are now reading. They should be able to check
whether there is something wrong with the locale configuration of the system. The
section is unfortunately a bit vague about the exact commands and places because these things are
not that standardized.

The POSIX::localeconv() function allows you to get particulars of the locale-dependent numeric
formatting information specified by the current and locales. (If you just
want the name of the current locale for a particular category, use POSIX::setlocale() with a single
parameter--see .)

Perl version 5.8.6 documentation - perllocale

Page 5http://perldoc.perl.org

env LC_ALL=en_US.ISO8859-1 perl ...

perl: warning: Please check that your locale settings:
LC_ALL = "En_US",
LANG = (unset)

are supported and installed on your system.

use POSIX qw(locale_h);

Get a reference to a hash of locale-dependent info
$locale_values = localeconv();

Output sorted list of the values
for (sort keys %$locale_values) {

printf "%-20s = %s\n", $_, $locale_values->{$_}
}

Permanently fixing locale problems

Permanently fixing your system's locale configuration

Fixing system locale configuration

The localeconv function

Finding locales

Permanently fixing your system’s locale configuration

Finding locales

Finding locales

The setlocale function

exactly

LC_NUMERIC LC_MONETARY

localeconv() takes no arguments, and returns a hash. The keys of this hash are
variable names for formatting, such as and . The values are the
corresponding, er, values. See for a longer example listing the categories an
implementation might be expected to provide; some provide more and others fewer. You don't need
an explicit , because localeconv() always observes the current locale.

Here's a simple-minded example program that rewrites its command-line parameters as integers
correctly formatted in the current locale:

Another interface for querying locale-dependent information is the I18N::Langinfo::langinfo() function,
available at least in UNIX-like systems and VMS.

The following example will import the langinfo() function itself and three constants to be used as
arguments to langinfo(): a constant for the abbreviated first day of the week (the numbering starts
from Sunday = 1) and two more constants for the affirmative and negative answers for a yes/no
question in the current locale.

Perl version 5.8.6 documentation - perllocale

Page 6http://perldoc.perl.org

See comments in previous example
require 5.004;
use POSIX qw(locale_h);

Get some of locale’s numeric formatting parameters
my ($thousands_sep, $grouping) =

@{localeconv()}{’thousands_sep’, ’grouping’};

Apply defaults if values are missing
$thousands_sep = ’,’ unless $thousands_sep;

grouping and mon_grouping are packed lists
of small integers (characters) telling the
grouping (thousand_seps and mon_thousand_seps
being the group dividers) of numbers and
monetary quantities. The integers’ meanings:
255 means no more grouping, 0 means repeat
the previous grouping, 1-254 means use that
as the current grouping. Grouping goes from
right to left (low to high digits). In the
below we cheat slightly by never using anything
else than the first grouping (whatever that is).
if ($grouping) {

@grouping = unpack("C*", $grouping);
} else {

@grouping = (3);
}

Format command line params for current locale
for (@ARGV) {

$_ = int; # Chop non-integer part
1 while
s/(\d)(\d{$grouping[0]}($|$thousands_sep))/$1$thousands_sep$2/;
print "$_";

}
print "\n";

a reference to
decimal_point thousands_sep

use locale

"localeconv" in POSIX

I18N::Langinfo

In other words, in the "C" (or English) locale the above will probably print something like:

See for more information.

The following subsections describe basic locale categories. Beyond these, some combination
categories allow manipulation of more than one basic category at a time. See for a
discussion of these.

In the scope of , Perl looks to the environment variable to determine the
application's notions on collation (ordering) of characters. For example, 'b' follows 'a' in Latin
alphabets, but where do 'á' and 'å' belong? And while 'color' follows 'chocolate' in English, what about
in Spanish?

The following collations all make sense and you may meet any of them if you "use locale".

Here is a code snippet to tell what "word" characters are in the current locale, in that locale's order:

Compare this with the characters that you see and their order if you state explicitly that the locale
should be ignored:

This machine-native collation (which is what you get unless has appeared earlier in the
same block) must be used for sorting raw binary data, whereas the locale-dependent collation of the
first example is useful for natural text.

As noted in , compares according to the current collation locale when
is in effect, but falls back to a char-by-char comparison for strings that the locale says are

equal. You can use POSIX::strcoll() if you don't want this fall-back:

$equal_in_locale will be true if the collation locale specifies a dictionary-like ordering that ignores

Perl version 5.8.6 documentation - perllocale

Page 7http://perldoc.perl.org

use I18N::Langinfo qw(langinfo ABDAY_1 YESSTR NOSTR);

my ($abday_1, $yesstr, $nostr) = map { langinfo } qw(ABDAY_1 YESSTR
NOSTR);

print "$abday_1? [$yesstr/$nostr] ";

Sun? [yes/no]

A B C D E a b c d e
A a B b C c D d E e
a A b B c C d D e E
a b c d e A B C D E

use locale;
print +(sort grep /\w/, map { chr } 0..255), "\n";

no locale;
print +(sort grep /\w/, map { chr } 0..255), "\n";

use POSIX qw(strcoll);
$equal_in_locale =

!strcoll("space and case ignored", "SpaceAndCaseIgnored");

I18N::Langinfo

ENVIRONMENT

USING LOCALES

LOCALE CATEGORIES

Category LC_COLLATE: Collation
use locale LC_COLLATE

use locale

cmp use
locale

space characters completely and which folds case.

If you have a single string that you want to check for "equality in locale" against several others, you
might think you could gain a little efficiency by using POSIX::strxfrm() in conjunction with :

strxfrm() takes a string and maps it into a transformed string for use in char-by-char comparisons
against other transformed strings during collation. "Under the hood", locale-affected Perl comparison
operators call strxfrm() for both operands, then do a char-by-char comparison of the transformed
strings. By calling strxfrm() explicitly and using a non locale-affected comparison, the example
attempts to save a couple of transformations. But in fact, it doesn't save anything: Perl magic (see

) creates the transformed version of a string the first time it's needed in a
comparison, then keeps this version around in case it's needed again. An example rewritten the easy
way with runs just about as fast. It also copes with null characters embedded in strings; if you call
strxfrm() directly, it treats the first null it finds as a terminator. don't expect the transformed strings it
produces to be portable across systems--or even from one revision of your operating system to the
next. In short, don't call strxfrm() directly: let Perl do it for you.

Note: isn't shown in some of these examples because it isn't needed: strcoll() and
strxfrm() exist only to generate locale-dependent results, and so always obey the current

locale.

In the scope of , Perl obeys the locale setting. This controls the application's
notion of which characters are alphabetic. This affects Perl's regular expression metanotation,
which stands for alphanumeric characters--that is, alphabetic, numeric, and including other special
characters such as the underscore or hyphen. (Consult for more information about regular
expressions.) Thanks to , depending on your locale setting, characters like 'æ', 'ð', 'ß', and '
ø' may be understood as characters.

The locale also provides the map used in transliterating characters between lower and
uppercase. This affects the case-mapping functions--lc(), lcfirst, uc(), and ucfirst(); case-mapping
interpolation with , , , or in double-quoted strings and substitutions; and
case-independent regular expression pattern matching using the modifier.

Finally, affects the POSIX character-class test functions--isalpha(), islower(), and so on.
For example, if you move from the "C" locale to a 7-bit Scandinavian one, you may find--possibly to
your surprise--that "|" moves from the ispunct() class to isalpha().

A broken or malicious locale definition may result in clearly ineligible characters
being considered to be alphanumeric by your application. For strict matching of (mundane) letters and
digits--for example, in command strings--locale-aware applications should use inside a

block. See .

In the scope of , Perl obeys the locale information, which controls an
application's idea of how numbers should be formatted for human readability by the printf(), sprintf(),
and write() functions. String-to-numeric conversion by the POSIX::strtod() function is also affected. In
most implementations the only effect is to change the character used for the decimal point--perhaps
from '.' to ','. These functions aren't aware of such niceties as thousands separation and so on. (See

Perl version 5.8.6 documentation - perllocale

Page 8http://perldoc.perl.org

eq

cmp

use locale

LC_COLLATE

use locale LC_CTYPE
\w

LC_CTYPE
\w

LC_CTYPE

\l \L \u \U s///
i

LC_CTYPE

LC_CTYPE

\w no
locale

use locale LC_NUMERIC

use POSIX qw(strxfrm);
$xfrm_string = strxfrm("Mixed-case string");
print "locale collation ignores spaces\n"

if $xfrm_string eq strxfrm("Mixed-casestring");
print "locale collation ignores hyphens\n"

if $xfrm_string eq strxfrm("Mixedcase string");
print "locale collation ignores case\n"

if $xfrm_string eq strxfrm("mixed-case string");

"Magic Variables" in perlguts

perlre

SECURITY

Category LC_CTYPE: Character Types

Category LC_NUMERIC: Numeric Formatting

Note:

if you care about these things.)

Output produced by print() is also affected by the current locale: it depends on whether
or is in effect, and corresponds to what you'd get from printf() in the "C" locale. The same
is true for Perl's internal conversions between numeric and string formats:

See also and .

The C standard defines the category, but no function that is affected by its contents.
(Those with experience of standards committees will recognize that the working group decided to punt
on the issue.) Consequently, Perl takes no notice of it. If you really want to use , you
can query its contents--see --and use the information that it returns in your
application's own formatting of currency amounts. However, you may well find that the information,
voluminous and complex though it may be, still does not quite meet your requirements: currency
formatting is a hard nut to crack.

See also and .

Output produced by POSIX::strftime(), which builds a formatted human-readable date/time string, is
affected by the current locale. Thus, in a French locale, the output produced by the
format element (full month name) for the first month of the year would be "janvier". Here's how to get
a list of long month names in the current locale:

Note: isn't needed in this example: as a function that exists only to generate
locale-dependent results, strftime() always obeys the current locale.

See also and .. , .. , .. , and
.. .

The remaining locale category, (possibly supplemented by others in particular
implementations) is not currently used by Perl--except possibly to affect the behavior of library
functions called by extensions outside the standard Perl distribution and by the operating system and

Perl version 5.8.6 documentation - perllocale

Page 9http://perldoc.perl.org

The localeconv function

I18N::Langinfo

The localeconv function

I18N::Langinfo

I18N::Langinfo

use locale
no locale

RADIXCHAR

LC_MONETARY

LC_MONETARY

CRNCYSTR

LC_TIME %B

use locale
LC_TIME

ABDAY_1 ABDAY_7 DAY_1 DAY_7 ABMON_1 ABMON_12
ABMON_1 ABMON_12

LC_MESSAGES

use POSIX qw(strtod);
use locale;

$n = 5/2; # Assign numeric 2.5 to $n

$a = " $n"; # Locale-dependent conversion to string

print "half five is $n\n"; # Locale-dependent output

printf "half five is %g\n", $n; # Locale-dependent output

print "DECIMAL POINT IS COMMA\n"
if $n == (strtod("2,5"))[0]; # Locale-dependent conversion

use POSIX qw(strftime);
for (0..11) {

$long_month_name[$_] =
strftime("%B", 0, 0, 0, 1, $_, 96);

}

Category LC_MONETARY: Formatting of monetary amounts

LC_TIME

Other categories

its utilities. Note especially that the string value of and the error messages given by external
utilities may be changed by . If you want to have portable error codes, use . See

.

Although the main discussion of Perl security issues can be found in , a discussion of Perl's
locale handling would be incomplete if it did not draw your attention to locale-dependent security
issues. Locales--particularly on systems that allow unprivileged users to build their own locales--are
untrustworthy. A malicious (or just plain broken) locale can make a locale-aware application give
unexpected results. Here are a few possibilities:

Regular expression checks for safe file names or mail addresses using may be spoofed by
an locale that claims that characters such as ">" and "|" are alphanumeric.

String interpolation with case-mapping, as in, say, , may
produce dangerous results if a bogus LC_CTYPE case-mapping table is in effect.

A sneaky locale could result in the names of students with "D" grades appearing
ahead of those with "A"s.

An application that takes the trouble to use information in may format debits as
if they were credits and vice versa if that locale has been subverted. Or it might make
payments in US dollars instead of Hong Kong dollars.

The date and day names in dates formatted by strftime() could be manipulated to advantage
by a malicious user able to subvert the locale. ("Look--it says I wasn't in the building
on Sunday.")

Such dangers are not peculiar to the locale system: any aspect of an application's environment which
may be modified maliciously presents similar challenges. Similarly, they are not specific to Perl: any
programming language that allows you to write programs that take account of their environment
exposes you to these issues.

Perl cannot protect you from all possibilities shown in the examples--there is no substitute for your
own vigilance--but, when is in effect, Perl uses the tainting mechanism (see) to
mark string results that become locale-dependent, and which may be untrustworthy in consequence.
Here is a summary of the tainting behavior of operators and functions that may be affected by the
locale:

(, , , and):

Scalar true/false (or less/equal/greater) result is never tainted.

(with , , or)

Result string containing interpolated material is tainted if is in effect.

():

Scalar true/false result never tainted.

Subpatterns, either delivered as a list-context result or as $1 etc. are tainted if is
in effect, and the subpattern regular expression contains (to match an alphanumeric
character), (non-alphanumeric character), (white-space character), or (non
white-space character). The matched-pattern variable, $&, $` (pre-match), $' (post-match),
and $+ (last match) are also tainted if is in effect and the regular expression
contains , , , or .

():

Has the same behavior as the match operator. Also, the left operand of becomes tainted
when in effect if modified as a result of a substitution based on a regular
expression match involving , , , or ; or of case-mapping with , , or .

Perl version 5.8.6 documentation - perllocale

Page 10http://perldoc.perl.org

$!
LC_MESSAGES %!

\w
LC_CTYPE

$dest = "C:\U$name.$ext"

LC_COLLATE

LC_MONETARY

LC_DATE

use locale

lt le ge gt cmp

\l \L \u \U

use locale

m//

use locale
\w

\W \s \S

use locale
\w \W \s \S

s///

=~
use locale

\w \W \s \S \l \L \u \U

Errno

perlsec

perlsec

SECURITY

Comparison operators

Case-mapping interpolation

Matching operator

Substitution operator

(printf() and write()):

Results are never tainted because otherwise even output from print, for example
, should be tainted if is in effect.

(lc(), lcfirst(), uc(), ucfirst()):

Results are tainted if is in effect.

(localeconv(), strcoll(), strftime(), strxfrm()):

Results are never tainted.

(isalnum(), isalpha(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit()):

True/false results are never tainted.

Three examples illustrate locale-dependent tainting. The first program, which ignores its locale, won't
run: a value taken directly from the command line may not be used to name an output file when taint
checks are enabled.

The program can be made to run by "laundering" the tainted value through a regular expression: the
second example--which still ignores locale information--runs, creating the file named on its command
line if it can.

Compare this with a similar but locale-aware program:

This third program fails to run because $& is tainted: it is the result of a match involving while
is in effect.

Perl version 5.8.6 documentation - perllocale

Page 11http://perldoc.perl.org

Output formatting functions

Case-mapping functions

POSIX locale-dependent functions

POSIX character class tests

print(1/7) use locale

use locale

\w use
locale

#/usr/local/bin/perl -T
Run with taint checking

Command line sanity check omitted...
$tainted_output_file = shift;

open(F, ">$tainted_output_file")
or warn "Open of $untainted_output_file failed: $!\n";

#/usr/local/bin/perl -T

$tainted_output_file = shift;
$tainted_output_file =~ m%[\w/]+%;
$untainted_output_file = $&;

open(F, ">$untainted_output_file")
or warn "Open of $untainted_output_file failed: $!\n";

#/usr/local/bin/perl -T

$tainted_output_file = shift;
use locale;
$tainted_output_file =~ m%[\w/]+%;
$localized_output_file = $&;

open(F, ">$localized_output_file")
or warn "Open of $localized_output_file failed: $!\n";

PERL_BADLANG

A string that can suppress Perl's warning about failed locale settings at startup.
Failure can occur if the locale support in the operating system is lacking
(broken) in some way--or if you mistyped the name of a locale when you set up
your environment. If this environment variable is absent, or has a value that
does not evaluate to integer zero--that is, "0" or ""-- Perl will complain about
locale setting failures.

: PERL_BADLANG only gives you a way to hide the warning message.
The message tells about some problem in your system's locale support, and
you should investigate what the problem is.

The following environment variables are not specific to Perl: They are part of the standardized (ISO C,
XPG4, POSIX 1.c) setlocale() method for controlling an application's opinion on data.

LC_ALL

is the "override-all" locale environment variable. If set, it overrides all
the rest of the locale environment variables.

LANGUAGE

: is a GNU extension, it affects you only if you are using the
GNU libc. This is the case if you are using e.g. Linux. If you are using
"commercial" UNIXes you are most probably using GNU libc and you can
ignore .

However, in the case you are using : it affects the language of
informational, warning, and error messages output by commands (in other
words, it's like) but it has higher priority than .
Moreover, it's not a single value but instead a "path" (":"-separated list) of

(not locales). See the GNU library documentation for
more information.

LC_CTYPE

In the absence of , chooses the character type locale. In
the absence of both and , chooses the character type
locale.

LC_COLLATE

In the absence of , chooses the collation (sorting) locale.
In the absence of both and , chooses the collation
locale.

LC_MONETARY

In the absence of , chooses the monetary formatting
locale. In the absence of both and , chooses the
monetary formatting locale.

LC_NUMERIC

In the absence of , chooses the numeric format locale. In
the absence of both and , chooses the numeric
format.

LC_TIME

In the absence of , chooses the date and time formatting
locale. In the absence of both and , chooses the date
and time formatting locale.

Perl version 5.8.6 documentation - perllocale

Page 12http://perldoc.perl.org

ENVIRONMENT

NOTE

NOTE

LC_ALL

LANGUAGE

LANGUAGE

LANGUAGE

LC_MESSAGES

gettext

LC_ALL LC_CTYPE
LC_ALL LC_CTYPE LANG

LC_ALL LC_COLLATE
LC_ALL LC_COLLATE LANG

LC_ALL LC_MONETARY
LC_ALL LC_MONETARY LANG

LC_ALL LC_NUMERIC
LC_ALL LC_NUMERIC LANG

LC_ALL LC_TIME
LC_ALL LC_TIME LANG

not

LC_ALL

languages

LANG

is the "catch-all" locale environment variable. If it is set, it is used as the
last resort after the overall and the category-specific .

Versions of Perl prior to 5.004 ignored locale information, generally behaving as if something
similar to the locale were always in force, even if the program environment suggested otherwise
(see). By default, Perl still behaves this way for backward compatibility. If you
want a Perl application to pay attention to locale information, you use the pragma
(see) to instruct it to do so.

Versions of Perl from 5.002 to 5.003 did use the information if available; that is, did
understand what were the letters according to the locale environment variables. The problem was that
the user had no control over the feature: if the C library supported locales, Perl used them.

In versions of Perl prior to 5.004, per-locale collation was possible using the library
module. This module is now mildly obsolete and should be avoided in new applications. The

functionality is now integrated into the Perl core language: One can use locale-specific
scalar data completely normally with , so there is no longer any need to juggle with the
scalar references of .

Comparing and sorting by locale is usually slower than the default sorting; slow-downs of two to four
times have been observed. It will also consume more memory: once a Perl scalar variable has
participated in any string comparison or sorting operation obeying the locale collation rules, it will take
3-15 times more memory than before. (The exact multiplier depends on the string's contents, the
operating system and the locale.) These downsides are dictated more by the operating system's
implementation of the locale system than by Perl.

Formats are the only part of Perl that unconditionally use information from a program's locale; if a
program's environment specifies an LC_NUMERIC locale, it is always used to specify the decimal
point character in formatted output. Formatted output cannot be controlled by because
the pragma is tied to the block structure of the program, and, for historical reasons, formats exist
outside that block structure.

There is a large collection of locale definitions at ftp://dkuug.dk/i18n/WG15-collection . You should be
aware that it is unsupported, and is not claimed to be fit for any purpose. If your system allows
installation of arbitrary locales, you may find the definitions useful as they are, or as a basis for the
development of your own locales.

"Internationalization" is often abbreviated as because its first and last letters are separated by
eighteen others. (You may guess why the internalin ... internaliti ... i18n tends to get abbreviated.) In
the same way, "localization" is often abbreviated to .

Internationalization, as defined in the C and POSIX standards, can be criticized as incomplete,
ungainly, and having too large a granularity. (Locales apply to a whole process, when it would
arguably be more useful to have them apply to a single thread, window group, or whatever.) They
also have a tendency, like standards groups, to divide the world into nations, when we all know that
the world can equally well be divided into bankers, bikers, gamers, and so on. But, for now, it's the

Perl version 5.8.6 documentation - perllocale

Page 13http://perldoc.perl.org

LANG
LC_ALL LC_...

"C"

use locale

LC_CTYPE \w

I18N::Collate

LC_COLLATE
use locale

I18N::Collate

use locale

NOTES
Backward compatibility

I18N:Collate obsolete

Sort speed and memory use impacts

write() and LC_NUMERIC

Freely available locale definitions

I18n and l10n

An imperfect standard

mostly

must

i18n

l10n

The setlocale function

The use locale pragma

only standard we've got. This may be construed as a bug.

The support of Unicode is new starting from Perl version 5.6, and more fully implemented in the
version 5.8. See and for more details.

Usually locale settings and Unicode do not affect each other, but there are exceptions, see
for examples.

In certain systems, the operating system's locale support is broken and cannot be fixed or used by
Perl. Such deficiencies can and will result in mysterious hangs and/or Perl core dumps when the

is in effect. When confronted with such a system, please report in excruciating detail to <
>, and complain to your vendor: bug fixes may exist for these problems in your

operating system. Sometimes such bug fixes are called an operating system upgrade.

, , , , , ,
, , , , ,
, , , , ,

, , , .

Jarkko Hietaniemi's original heavily hacked by Dominic Dunlop, assisted by the
perl5-porters. Prose worked over a bit by Tom Christiansen.

Last update: Thu Jun 11 08:44:13 MDT 1998

Perl version 5.8.6 documentation - perllocale

Page 14http://perldoc.perl.org

Unicode and UTF-8

BUGS

SEE ALSO

HISTORY

perluniintro perlunicode

"Locales"
in perlunicode

perlbug@perl.org

I18N::Langinfo perluniintro perlunicode open "isalnum" in POSIX "isalpha" in POSIX "isdigit" in
POSIX "isgraph" in POSIX "islower" in POSIX "isprint" in POSIX "ispunct" in POSIX "isspace" in
POSIX "isupper" in POSIX "isxdigit" in POSIX "localeconv" in POSIX "setlocale" in POSIX "strcoll"
in POSIX "strftime" in POSIX "strtod" in POSIX "strxfrm" in POSIX

perli18n.pod

Broken systems

use
locale

