
perlfaq6 - Regular Expressions ($Revision: 1.27 $, $Date: 2004/11/03 22:52:16 $)

This section is surprisingly small because the rest of the FAQ is littered with answers involving regular
expressions. For example, decoding a URL and checking whether something is a number are
handled with regular expressions, but those answers are found elsewhere in this document (in

: ``How do I decode or create those %-encodings on the web'' and : ``How do I
determine whether a scalar is a number/whole/integer/float'', to be precise).

Three techniques can make regular expressions maintainable and understandable.

Comments Outside the Regex

Describe what you're doing and how you're doing it, using normal Perl comments.

Comments Inside the Regex

The modifier causes whitespace to be ignored in a regex pattern (except in a character
class), and also allows you to use normal comments there, too. As you can imagine,
whitespace and comments help a lot.

lets you turn this:

into this:

It's still not quite so clear as prose, but it is very useful for describing the meaning of each part
of the pattern.

Different Delimiters

While we normally think of patterns as being delimited with characters, they can be delimited
by almost any character. describes this. For example, the above uses braces as
delimiters. Selecting another delimiter can avoid quoting the delimiter within the pattern:

Perl version 5.8.6 documentation - perlfaq6

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

perlfaq9 perlfaq4

perlre

How can I hope to use regular expressions without creating illegible and unmaintainable code?

turn the line into the first word, a colon, and the
number of characters on the rest of the line
s/^(\w+)(.*)/ lc($1) . ":" . length($2) /meg;

s{<(?:[^>’"]*|".*?"|’.*?’)+>}{}gs;

s{ < # opening angle bracket
(?: # Non-backreffing grouping paren

[^>’"] * # 0 or more things that are neither > nor
’ nor "

| # or else
".*?" # a section between double quotes (stingy

match)
| # or else

’.*?’ # a section between single quotes (stingy
match)

) + # all occurring one or more times
> # closing angle bracket

}{}gsx; # replace with nothing, i.e. delete

s/\/usr\/local/\/usr\/share/g; # bad delimiter choice
s#/usr/local#/usr/share#g; # better

/x

/x

/
s///

Either you don't have more than one line in the string you're looking at (probably), or else you aren't
using the correct modifier(s) on your pattern (possibly).

There are many ways to get multiline data into a string. If you want it to happen automatically while
reading input, you'll want to set $/ (probably to '' for paragraphs or for the whole file) to allow
you to read more than one line at a time.

Read to help you decide which of and (or both) you might want to use: allows dot to
include newline, and allows caret and dollar to match next to a newline, not just at the end of the
string. You do need to make sure that you've actually got a multiline string in there.

For example, this program detects duplicate words, even when they span line breaks (but not
paragraph ones). For this example, we don't need because we aren't using dot in a regular
expression that we want to cross line boundaries. Neither do we need because we aren't wanting
caret or dollar to match at any point inside the record next to newlines. But it's imperative that $/ be
set to something other than the default, or else we won't actually ever have a multiline record read in.

Here's code that finds sentences that begin with "From " (which would be mangled by many mailers):

Here's code that finds everything between START and END in a paragraph:

You can use Perl's somewhat exotic operator (documented in):

If you wanted text and not lines, you would use

But if you want nested occurrences of through , you'll run up against the problem
described in the question in this section on matching balanced text.

Here's another example of using :

Perl version 5.8.6 documentation - perlfaq6

Page 2http://perldoc.perl.org

I'm having trouble matching over more than one line. What's wrong?

How can I pull out lines between two patterns that are themselves on different lines?

undef

/s /m /s
/m

/s
/m

..

START END

..

perlre

perlop

$/ = ’’; # read in more whole paragraph, not just one line
while (<>) {

while (/\b([\w’-]+)(\s+\1)+\b/gi) { # word starts alpha
print "Duplicate $1 at paragraph $.\n";

}
}

$/ = ’’; # read in more whole paragraph, not just one line
while (<>) {

while (/^From /gm) { # /m makes ^ match next to \n
print "leading from in paragraph $.\n";

}
}

undef $/; # read in whole file, not just one line or paragraph
while (<>) {

while (/START(.*?)END/sgm) { # /s makes . cross line boundaries
print "$1\n";

}
}

perl -ne ’print if /START/ .. /END/’ file1 file2 ...

perl -0777 -ne ’print "$1\n" while /START(.*?)END/gs’ file1 file2 ...

Up to Perl 5.8.0, $/ has to be a string. This may change in 5.10, but don't get your hopes up. Until
then, you can use these examples if you really need to do this.

If you have File::Stream, this is easy.

If you don't have File::Stream, you have to do a little more work.

You can use the four argument form of sysread to continually add to a buffer. After you add to the
buffer, you check if you have a complete line (using your regular expression).

Here's a lovely Perlish solution by Larry Rosler. It exploits properties of bitwise xor on ASCII strings.

Perl version 5.8.6 documentation - perlfaq6

Page 3http://perldoc.perl.org

while (<>) {
$in_header = 1 .. /^$/;
$in_body = /^$/ .. eof();

now choose between them
} continue {

reset if eof(); # fix $.
}

use File::Stream;
my $stream = File::Stream->new(

$filehandle,
separator => qr/\s*,\s*/,
);

print "$_\n" while <$stream>;

local $_ = "";
while(sysread FH, $_, 8192, length) {

while(s/^((?s).*?)your_pattern/) {
my $record = $1;
do stuff here.

}
}

You can do the same thing with foreach and a match using the
c flag and the \G anchor, if you do not mind your entire file
being in memory at the end.

local $_ = "";
while(sysread FH, $_, 8192, length) {

foreach my $record (m/\G((?s).*?)your_pattern/gc) {
do stuff here.

}
substr($_, 0, pos) = "" if pos;

}

$_= "this is a TEsT case";

$old = ’test’;
$new = ’success’;

I put a regular expression into $/ but it didn't work. What's wrong?

How do I substitute case insensitively on the LHS while preserving case on the RHS?

And here it is as a subroutine, modeled after the above:

This prints:

As an alternative, to keep the case of the replacement word if it is longer than the original, you can
use this code, by Jeff Pinyan:

This changes the sentence to "this is a SUcCess case."

Just to show that C programmers can write C in any programming language, if you prefer a more
C-like solution, the following script makes the substitution have the same case, letter by letter, as the
original. (It also happens to run about 240% slower than the Perlish solution runs.) If the substitution
has more characters than the string being substituted, the case of the last character is used for the
rest of the substitution.

Perl version 5.8.6 documentation - perlfaq6

Page 4http://perldoc.perl.org

s{(\Q$old\E)}
{ uc $new | (uc $1 ^ $1) .

(uc(substr $1, -1) ^ substr $1, -1) x
(length($new) - length $1)
}egi;

print;

sub preserve_case($$) {
my ($old, $new) = @_;
my $mask = uc $old ^ $old;

uc $new | $mask .
substr($mask, -1) x (length($new) - length($old))
}

$a = "this is a TEsT case";
$a =~ s/(test)/preserve_case($1, "success")/egi;
print "$a\n";

this is a SUcCESS case

sub preserve_case {
my ($from, $to) = @_;
my ($lf, $lt) = map length, @_;

if ($lt < $lf) { $from = substr $from, 0, $lt }
else { $from .= substr $to, $lf }

return uc $to | ($from ^ uc $from);
}

Original by Nathan Torkington, massaged by Jeffrey Friedl
#
sub preserve_case($$)
{

my ($old, $new) = @_;
my ($state) = 0; # 0 = no change; 1 = lc; 2 = uc
my ($i, $oldlen, $newlen, $c) = (0, length($old), length($new));
my ($len) = $oldlen < $newlen ? $oldlen : $newlen;

Put in your script. The \w character class is taken from the current locale.

See for details.

You can use the POSIX character class syntax documented in .

No matter which locale you are in, the alphabetic characters are the characters in \w without the digits
and the underscore. As a regex, that looks like . Its complement, the non-alphabetics, is
then everything in \W along with the digits and the underscore, or .

The Perl parser will expand $variable and @variable references in regular expressions unless the
delimiter is a single quote. Remember, too, that the right-hand side of a substitution is
considered a double-quoted string (see for more details). Remember also that any regex
special characters will be acted on unless you precede the substitution with \Q. Here's an example:

Because is special in regular expressions, and can match any single character, the regex here
has matched the <Pl> in the original string.

To escape the special meaning of , we use :

Perl version 5.8.6 documentation - perlfaq6

Page 5http://perldoc.perl.org

for ($i = 0; $i < $len; $i++) {
if ($c = substr($old, $i, 1), $c =~ /[\W\d_]/) {

$state = 0;
} elsif (lc $c eq $c) {

substr($new, $i, 1) = lc(substr($new, $i, 1));
$state = 1;

} else {
substr($new, $i, 1) = uc(substr($new, $i, 1));
$state = 2;

}
}
finish up with any remaining new (for when new is longer than

old)
if ($newlen > $oldlen) {

if ($state == 1) {
substr($new, $oldlen) = lc(substr($new, $oldlen));

} elsif ($state == 2) {
substr($new, $oldlen) = uc(substr($new, $oldlen));

}
}
return $new;

}

$string = "Placido P. Octopus";
$regex = "P.";

$string =~ s/$regex/Polyp/;
$string is now "Polypacido P. Octopus"

$string = "Placido P. Octopus";
$regex = "P.";

$string =~ s/\Q$regex/Polyp/;

How can I make \w match national character sets?

How can I match a locale-smart version of /[a-zA-Z]/?

How can I quote a variable to use in a regex?

use locale;

/[[:alpha:]]/

/[^\W\d_]/
/[\W\d_]/

s///

. P.

. \Q

perllocale

perlre

perlop

The use of causes the <.> in the regex to be treated as a regular character, so that matches a
followed by a dot.

Using a variable in a regular expression match forces a re-evaluation (and perhaps recompilation)
each time the regular expression is encountered. The modifier locks in the regex the first time it's
used. This always happens in a constant regular expression, and in fact, the pattern was compiled
into the internal format at the same time your entire program was.

Use of is irrelevant unless variable interpolation is used in the pattern, and if so, the regex engine
will neither know nor care whether the variables change after the pattern is evaluated the
time.

is often used to gain an extra measure of efficiency by not performing subsequent evaluations
when you know it won't matter (because you know the variables won't change), or more rarely, when
you don't want the regex to notice if they do.

For example, here's a "paragrep" program:

While this actually can be done, it's much harder than you'd think. For example, this one-liner

will work in many but not all cases. You see, it's too simple-minded for certain kinds of C programs, in
particular, those with what appear to be comments in quoted strings. For that, you'd need something
like this, created by Jeffrey Friedl and later modified by Fred Curtis.

This could, of course, be more legibly written with the modifier, adding whitespace and comments.
Here it is expanded, courtesy of Fred Curtis.

Perl version 5.8.6 documentation - perlfaq6

Page 6http://perldoc.perl.org

$string is now "Placido Polyp Octopus"

$/ = ’’; # paragraph mode
$pat = shift;
while (<>) {

print if /$pat/o;
}

perl -0777 -pe ’s{/*.*?*/}{}gs’ foo.c

$/ = undef;
$_ = <>;
s#/*[^*]**+([^/*][^*]**+)*/|("(\\.|[^"\\])*"|’(\\.|[^’\\])*’

|.[^/"’\\]*)#defined $2 ? $2 : ""#gse;
print;

s{
/* ## Start of /* ... */ comment
[^*]**+ ## Non-* followed by 1-or-more *’s
(
[^/*][^*]**+

)* ## 0-or-more things which don’t start with /
but do end with ’*’

/ ## End of /* ... */ comment

| ## OR various things which aren’t comments:

\Q P.
P

/o

/o

/o

/x

What is /o really for?

How do I use a regular expression to strip C style comments from a file?

very first

A slight modification also removes C++ comments:

Historically, Perl regular expressions were not capable of matching balanced text. As of more recent
versions of perl including 5.6.1 experimental features have been added that make it possible to do
this. Look at the documentation for the (??{ }) construct in recent perlre manual pages to see an
example of matching balanced parentheses. Be sure to take special notice of the warnings present in
the manual before making use of this feature.

CPAN contains many modules that can be useful for matching text depending on the context. Damian
Conway provides some useful patterns in Regexp::Common. The module Text::Balanced provides a
general solution to this problem.

One of the common applications of balanced text matching is working with XML and HTML. There are
many modules available that support these needs. Two examples are HTML::Parser and
XML::Parser. There are many others.

An elaborate subroutine (for 7-bit ASCII only) to pull out balanced and possibly nested single chars,
like and , and , or and can be found in
http://www.cpan.org/authors/id/TOMC/scripts/pull_quotes.gz .

The C::Scan module from CPAN also contains such subs for internal use, but they are
undocumented.

Perl version 5.8.6 documentation - perlfaq6

Page 7http://perldoc.perl.org

(
" ## Start of " ... " string
(
\\. ## Escaped char

| ## OR
[^"\\] ## Non "\

)*
" ## End of " ... " string

| ## OR

’ ## Start of ’ ... ’ string
(
\\. ## Escaped char

| ## OR
[^’\\] ## Non ’\

)*
’ ## End of ’ ... ’ string

| ## OR

. ## Anything other char
[^/"’\\]* ## Chars which doesn’t start a comment, string or

escape
)

}{defined $2 ? $2 : ""}gxse;

s#/*[^*]**+([^/*][^*]**+)*/|//[^\n]*|("(\\.|[^"\\])*"|’(\\.|
[^’\\])*’|.[^/"’\\]*)#defined $2 ? $2 : ""#gse;

Can I use Perl regular expressions to match balanced text?

‘ ’ { } ()

Most people mean that greedy regexes match as much as they can. Technically speaking, it's actually
the quantifiers (, , ,) that are greedy rather than the whole pattern; Perl prefers local greed and
immediate gratification to overall greed. To get non-greedy versions of the same quantifiers, use (,

, ,).

An example:

Notice how the second substitution stopped matching as soon as it encountered "y ". The
quantifier effectively tells the regular expression engine to find a match as quickly as possible and
pass control on to whatever is next in line, like you would if you were playing hot potato.

Use the split function:

Note that this isn't really a word in the English sense; it's just chunks of consecutive non-whitespace
characters.

To work with only alphanumeric sequences (including underscores), you might consider

To do this, you have to parse out each word in the input stream. We'll pretend that by word you mean
chunk of alphabetics, hyphens, or apostrophes, rather than the non-whitespace chunk idea of a word
given in the previous question:

If you wanted to do the same thing for lines, you wouldn't need a regular expression:

Perl version 5.8.6 documentation - perlfaq6

Page 8http://perldoc.perl.org

What does it mean that regexes are greedy? How can I get around it?

How do I process each word on each line?

How can I print out a word-frequency or line-frequency summary?

? * + {}
??

*? +? {}?

*?

$s1 = $s2 = "I am very very cold";
$s1 =~ s/ve.*y //; # I am cold
$s2 =~ s/ve.*?y //; # I am very cold

while (<>) {
foreach $word (split) {

do something with $word here
}

}

while (<>) {
foreach $word (m/(\w+)/g) {

do something with $word here
}

}

while (<>) {
while (/(\b[^\W_\d][\w’-]+\b)/g) { # misses "‘sheep’"

$seen{$1}++;
}

}
while (($word, $count) = each %seen) {

print "$count $word\n";
}

while (<>) {
$seen{$_}++;

}
while (($line, $count) = each %seen) {

If you want these output in a sorted order, see : ``How do I sort a hash (optionally by value
instead of key)?''.

See the module String::Approx available from CPAN.

The following is extremely inefficient:

That's because Perl has to recompile all those patterns for each of the lines of the file. As of the 5.005
release, there's a much better approach, one which makes use of the new operator:

Two common misconceptions are that is a synonym for and that it's the edge between
whitespace characters and non-whitespace characters. Neither is correct. is the place between a

character and a character (that is, is the edge of a "word"). It's a zero-width assertion, just
like , , and all the other anchors, so it doesn't consume any characters. describes the
behavior of all the regex metacharacters.

Here are examples of the incorrect application of , with fixes:

Although they may not do what you thought they did, and can still be quite useful. For an
example of the correct use of , see the example of matching duplicate words over multiple lines.

An example of using is the pattern . This will find occurrences of "is" on the insides of

Perl version 5.8.6 documentation - perlfaq6

Page 9http://perldoc.perl.org

print "$count $line";
}

slow but obvious way
@popstates = qw(CO ON MI WI MN);
while (defined($line = <>)) {

for $state (@popstates) {
if ($line =~ /\b$state\b/i) {

print $line;
last;

}
}

}

use spiffy new qr// operator, with /i flag even
use 5.005;
@popstates = qw(CO ON MI WI MN);
@poppats = map { qr/\b$_\b/i } @popstates;
while (defined($line = <>)) {

for $patobj (@poppats) {
print $line if $line =~ /$patobj/;

}
}

"two words" =~ /(\w+)\b(\w+)/; # WRONG
"two words" =~ /(\w+)\s+(\w+)/; # right

" =matchless= text" =~ /\b=(\w+)=\b/; # WRONG
" =matchless= text" =~ /=(\w+)=/; # right

perlfaq4

perlre

How can I do approximate matching?

How do I efficiently match many regular expressions at once?

Why don't word-boundary searches with \b work for me?

qr//

\b \s+
\b

\w \W \b
^ $

\b

\b \B
\b

\B \Bis\B

words only, as in "thistle", but not "this" or "island".

Once Perl sees that you need one of these variables anywhere in the program, it provides them on
each and every pattern match. The same mechanism that handles these provides for the use of $1,
$2, etc., so you pay the same price for each regex that contains capturing parentheses. If you never
use $&, etc., in your script, then regexes capturing parentheses won't be penalized. So avoid
$&, $', and $` if you can, but if you can't, once you've used them at all, use them at will because
you've already paid the price. Remember that some algorithms really appreciate them. As of the
5.005 release. the $& variable is no longer "expensive" the way the other two are.

You use the anchor to start the next match on the same string where the last match left off. The
regular expression engine cannot skip over any characters to find the next match with this anchor, so

is similar to the beginning of string anchor, . The anchor is typically used with the flag. It
uses the value of pos() as the position to start the next match. As the match operator makes
successive matches, it updates pos() with the position of the next character past the last match (or the
first character of the next match, depending on how you like to look at it). Each string has its own
pos() value.

Suppose you want to match all of consective pairs of digits in a string like "1122a44" and stop
matching when you encounter non-digits. You want to match and but the letter <a> shows up
between and and you want to stop at . Simply matching pairs of digits skips over the and
still matches .

If you use the \G anchor, you force the match after to start with the . The regular expression
cannot match there since it does not find a digit, so the next match fails and the match operator
returns the pairs it already found.

You can also use the anchor in scalar context. You still need the flag.

After the match fails at the letter , perl resets pos() and the next match on the same string starts at
the beginning.

You can disable pos() resets on fail with the flag. Subsequent matches start where the last
successful match ended (the value of pos()) even if a match on the same string as failed in the

Perl version 5.8.6 documentation - perlfaq6

Page 10http://perldoc.perl.org

Why does using $&, $`, or $' slow my program down?

What good is \G in a regular expression?

without

\G

\G ^ \G g

11 22
22 44 a a

44

22 a

\G g

a

c

$_ = "1122a44";
my @pairs = m/(\d\d)/g; # qw(11 22 44)

$_ = "1122a44";
my @pairs = m/\G(\d\d)/g; # qw(11 22)

$_ = "1122a44";
while(m/\G(\d\d)/g)
{
print "Found $1\n";
}

$_ = "1122a44";
while(m/\G(\d\d)/g)
{
print "Found $1\n";
}

print "Found $1 after while" if m/(\d\d)/g; # finds "11"

meantime. In this case, the match after the while() loop starts at the (where the last match stopped),
and since it does not use any anchor it can skip over the to find "44".

Typically you use the anchor with the flag when you want to try a different match if one fails,
such as in a tokenizer. Jeffrey Friedl offers this example which works in 5.004 or later.

For each line, the PARSER loop first tries to match a series of digits followed by a word boundary.
This match has to start at the place the last match left off (or the beginning of the string on the first
match). Since uses the flag, if the string does not match that regular
expression, perl does not reset pos() and the next match starts at the same position to try a different
pattern.

While it's true that Perl's regular expressions resemble the DFAs (deterministic finite automata) of the
egrep(1) program, they are in fact implemented as NFAs (non-deterministic finite automata) to allow
backtracking and backreferencing. And they aren't POSIX-style either, because those guarantee
worst-case behavior for all cases. (It seems that some people prefer guarantees of consistency, even
when what's guaranteed is slowness.) See the book "Mastering Regular Expressions" (from O'Reilly)
by Jeffrey Friedl for all the details you could ever hope to know on these matters (a full citation
appears in).

The problem is that grep builds a return list, regardless of the context. This means you're making Perl
go to the trouble of building a list that you then just throw away. If the list is large, you waste both time
and space. If your intent is to iterate over the list, then use a for loop for this purpose.

In perls older than 5.8.1, map suffers from this problem as well. But since 5.8.1, this has been fixed,
and map is context aware - in void context, no lists are constructed.

Starting from Perl 5.6 Perl has had some level of multibyte character support. Perl 5.8 or later is
recommended. Supported multibyte character repertoires include Unicode, and legacy encodings
through the Encode module. See , , and .

If you are stuck with older Perls, you can do Unicode with the module, and
character conversions using the and modules. If you are using
Japanese encodings, you might try using the jperl 5.005_03.

Perl version 5.8.6 documentation - perlfaq6

Page 11http://perldoc.perl.org

a
a

\G c

m/ \G(\d+\b)/gcx c

Unicode::String
Unicode::Map8 Unicode::Map

$_ = "1122a44";
while(m/\G(\d\d)/gc)
{
print "Found $1\n";
}

print "Found $1 after while" if m/(\d\d)/g; # finds "44"

while (<>) {
chomp;
PARSER: {

m/ \G(\d+\b)/gcx && do { print "number: $1\n"; redo; };
m/ \G(\w+)/gcx && do { print "word: $1\n"; redo; };
m/ \G(\s+)/gcx && do { print "space: $1\n"; redo; };
m/ \G([^\w\d]+)/gcx && do { print "other: $1\n"; redo; };

}
}

Are Perl regexes DFAs or NFAs? Are they POSIX compliant?

What's wrong with using grep in a void context?

How can I match strings with multibyte characters?

perlfaq2

perluniintro perlunicode Encode

Finally, the following set of approaches was offered by Jeffrey Friedl, whose article in issue #5 of The
Perl Journal talks about this very matter.

Let's suppose you have some weird Martian encoding where pairs of ASCII uppercase letters encode
single Martian letters (i.e. the two bytes "CV" make a single Martian letter, as do the two bytes "SG",
"VS", "XX", etc.). Other bytes represent single characters, just like ASCII.

So, the string of Martian "I am CVSGXX!" uses 12 bytes to encode the nine characters 'I', ' ', 'a', 'm', ' ',
'CV', 'SG', 'XX', '!'.

Now, say you want to search for the single character . Perl doesn't know about Martian, so it'll
find the two bytes "GX" in the "I am CVSGXX!" string, even though that character isn't there: it just
looks like it is because "SG" is next to "XX", but there's no real "GX". This is a big problem.

Here are a few ways, all painful, to deal with it:

Or like this:

Or like this:

Here's another, slightly less painful, way to do it from Benjamin Goldberg, who uses a zero-width
negative look-behind assertion.

This succeeds if the "martian" character GX is in the string, and fails otherwise. If you don't like using
(?<!), a zero-width negative look-behind assertion, you can replace (?<![A-Z]) with (?:^|[^A-Z]).

It does have the drawback of putting the wrong thing in $-[0] and $+[0], but this usually can be worked
around.

Well, if it's really a pattern, then just use

Alternatively, since you have no guarantee that your user entered a valid regular expression, trap the
exception this way:

Perl version 5.8.6 documentation - perlfaq6

Page 12http://perldoc.perl.org

/GX/

$martian =~ s/([A-Z][A-Z])/ $1 /g; # Make sure adjacent ‘‘martian’’
bytes are no longer adjacent.

print "found GX!\n" if $martian =~ /GX/;

@chars = $martian =~ m/([A-Z][A-Z]|[^A-Z])/g;
above is conceptually similar to: @chars = $text =~ m/(.)/g;
#
foreach $char (@chars) {

print "found GX!\n", last if $char eq ’GX’;
}

while ($martian =~ m/\G([A-Z][A-Z]|.)/gs) { # \G probably unneeded
print "found GX!\n", last if $1 eq ’GX’;

}

print "found GX!\n" if $martian =~ m/
(?<![A-Z])
(?:[A-Z][A-Z])*?
GX

/x;

chomp($pattern = <STDIN>);
if ($line =~ /$pattern/) { }

How do I match a pattern that is supplied by the user?

If all you really want to search for a string, not a pattern, then you should either use the index()
function, which is made for string searching, or if you can't be disabused of using a pattern match on
a non-pattern, then be sure to use ... , documented in .

Copyright (c) 1997-2002 Tom Christiansen and Nathan Torkington. All rights reserved.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples in this file are hereby placed into the public domain.
You are permitted and encouraged to use this code in your own programs for fun or for profit as you
see fit. A simple comment in the code giving credit would be courteous but is not required.

Perl version 5.8.6 documentation - perlfaq6

Page 13http://perldoc.perl.org

if (eval { $line =~ /$pattern/ }) { }

$pattern = <STDIN>;

open (FILE, $input) or die "Couldn’t open input $input: $!; aborting";
while (<FILE>) {

print if /\Q$pattern\E/;
}
close FILE;

\Q \E perlre

AUTHOR AND COPYRIGHT

