
Filter::Simple - Simplified source filtering

Source filtering is an immensely powerful feature of recent versions of Perl. It allows one to extend the
language itself (e.g. the Switch module), to simplify the language (e.g. Language::Pythonesque), or to
completely recast the language (e.g. Lingua::Romana::Perligata). Effectively, it allows one to use the
full power of Perl as its own, recursively applied, macro language.

The excellent Filter::Util::Call module (by Paul Marquess) provides a usable Perl interface to source
filtering, but it is often too powerful and not nearly as simple as it could be.

To use the module it is necessary to do the following:

1. Download, build, and install the Filter::Util::Call module. (If you have Perl 5.7.1 or later, this is
already done for you.)

2. Set up a module that does a .

3. Within that module, create an subroutine.

4. Within the subroutine do a call to , passing it either a subroutine
reference.

5. Within the subroutine reference, call or to "prime" $_
with source code data from the source file that will your module. Check the status value
returned to see if any source code was actually read in.

6. Process the contents of $_ to change the source code in the desired manner.

Perl version 5.8.6 documentation - Filter::Simple

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

in MyFilter.pm:

package MyFilter;

use Filter::Simple;

FILTER { ... };

or just:
#
use Filter::Simple sub { ... };

in user’s code:

use MyFilter;

this code is filtered

no MyFilter;

this code is not

The Problem

use Filter::Util::Call

import

import filter_add

filter_read filter_read_exact
use

7. Return the status value.

8. If the act of unimporting your module (via a) should cause source code filtering to cease,
create an subroutine, and have it call . Make sure that the call to

or in step 5 will not accidentally read past the .
Effectively this limits source code filters to line-by-line operation, unless the
subroutine does some fancy pre-pre-parsing of the source code it's filtering.

For example, here is a minimal source code filter in a module named BANG.pm. It simply converts
every occurrence of the sequence to the sequence in any
piece of code following a statement (until the next statement, if any):

This level of sophistication puts filtering out of the reach of many programmers.

The Filter::Simple module provides a simplified interface to Filter::Util::Call; one that is sufficient for
most common cases.

Instead of the above process, with Filter::Simple the task of setting up a source code filter is reduced
to:

1. Download and install the Filter::Simple module. (If you have Perl 5.7.1 or later, this is already
done for you.)

2. Set up a module that does a and then calls .

Perl version 5.8.6 documentation - Filter::Simple

Page 2http://perldoc.perl.org

no
unimport filter_del

filter_read filter_read_exact no
import

BANG\s+BANG die ’BANG’ if $BANG
use BANG; no BANG;

use Filter::Simple FILTER { ... }

package BANG;

use Filter::Util::Call ;

sub import {
filter_add(sub {

my $caller = caller;
my ($status, $no_seen, $data);
while ($status = filter_read()) {

if (/^\s*no\s+$caller\s*;\s*?$/) {
$no_seen=1;
last;

}
$data .= $_;
$_ = "";

}
$_ = $data;
s/BANG\s+BANG/die ’BANG’ if \$BANG/g

unless $status < 0;
$_ .= "no $class;\n" if $no_seen;
return 1;

})
}

sub unimport {
filter_del();

}

1 ;

A Solution

3. Within the anonymous subroutine or block that is passed to , process the contents of
$_ to change the source code in the desired manner.

In other words, the previous example, would become:

Note that the source code is passed as a single string, so any regex that uses or to detect line
boundaries will need the flag.

By default, the installed filter only filters up to a line consisting of one of the three standard source
"terminators":

or:

or:

but this can be altered by passing a second argument to or (just
remember: there's comma after the initial block when you use).

That second argument may be either a 'd regular expression (which is then used to match the
terminator line), or a defined false value (which indicates that no terminator line should be looked for),
or a reference to a hash (in which case the terminator is the value associated with the key

.

For example, to cause the previous filter to filter only up to a line of the form:

you would write:

or:

Perl version 5.8.6 documentation - Filter::Simple

Page 3http://perldoc.perl.org

FILTER

^ $
/m

use Filter::Simple FILTER
FILTER

qr

’terminator’

package BANG;
use Filter::Simple;

FILTER {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;

};

1 ;

no ModuleName; # optional comment

__END__

__DATA__

GNAB esu;

package BANG;
use Filter::Simple;

FILTER {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;

}
qr/^\s*GNAB\s+esu\s*;\s*?$/;

Disabling or changing <no> behaviour

no

and to prevent the filter's being turned off in any way:

or:

Separating the loading of Filter::Simple:

from the setting up of the filtering:

is useful because it allows other code (typically parser support code or caching variables) to be
defined before the filter is invoked. However, there is often no need for such a separation.

In those cases, it is easier to just append the filtering subroutine and any terminator specification
directly to the statement that loads Filter::Simple, like so:

This is exactly the same as:

except that the subroutine is not exported by Filter::Simple.

Perl version 5.8.6 documentation - Filter::Simple

Page 4http://perldoc.perl.org

FILTER {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;

}
{ terminator => qr/^\s*GNAB\s+esu\s*;\s*?$/ };

package BANG;
use Filter::Simple;

FILTER {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;

}
""; # or: 0

FILTER {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;

}
{ terminator => "" };

use Filter::Simple;

FILTER { ... };

use Filter::Simple sub {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;

};

use Filter::Simple;
BEGIN {
Filter::Simple::FILTER {
s/BANG\s+BANG/die ’BANG’ if \$BANG/g;
};
}

Note that, no matter what you set the terminator pattern to, the actual terminator itself be
contained on a single source line.

must

All-in-one interface

use

FILTER

One of the problems with a filter like:

is that it indiscriminately applies the specified transformation to the entire text of your source program.
So something like:

will become:

It is very common when filtering source to only want to apply the filter to the non-character-string parts
of the code, or alternatively to the character strings.

Filter::Simple supports this type of filtering by automatically exporting the subroutine.

takes a sequence of specifiers that install separate (and possibly multiple) filters that
act on only parts of the source code. For example:

The subroutine will only be used to filter parts of the source code that are not quotelikes,
POD, or . The subroutine only filters Perl quotelikes (including here
documents).

The full list of alternatives is:

Filters only those sections of the source code that are not quotelikes, POD, or .

Filters only those sections of the source code that are not POD or .

Filters only Perl quotelikes (as interpreted by).

Filters only the string literal parts of a Perl quotelike (i.e. the contents of a string literal, either
half of a , the second half of an).

Filters only the pattern literal parts of a Perl quotelike (i.e. the contents of a or an ,
the first half of an).

Perl version 5.8.6 documentation - Filter::Simple

Page 5http://perldoc.perl.org

Filtering only specific components of source code

use Filter::Simple;

FILTER { s/BANG\s+BANG/die ’BANG’ if \$BANG/g };

warn ’BANG BANG, YOU’RE DEAD’;
BANG BANG;

warn ’die ’BANG’ if $BANG, YOU’RE DEAD’;
die ’BANG’ if $BANG;

use Filter::Simple;

FILTER_ONLY
code => sub { s/BANG\s+BANG/die ’BANG’ if \$BANG/g },
quotelike => sub { s/BANG\s+BANG/CHITTY CHITTY/g };

only

FILTER_ONLY

FILTER_ONLY

"code"
__DATA__ quotelike

"code"

__DATA__

"executable"

__DATA__

"quotelike"

&Text::Balanced::extract_quotelike

"string"

tr/// s///

"regex"

qr// m//
s///

"all"

Filters everything. Identical in effect to .

Except for , each of the component filters is called repeatedly,
once for each component found in the source code.

Note that you can also apply two or more of the same type of filter in a single . For
example, here's a simple macro-preprocessor that is only applied within regexes, with a final
debugging pass that prints the resulting source code:

Most source code ceases to be grammatically correct when it is broken up into the pieces between
string literals and regexes. So the component filter behaves slightly differently from the other
partial filters described in the previous section.

Rather than calling the specified processor on each individual piece of code (i.e. on the bits between
quotelikes), the partial filter operates on the entire source code, but with the quotelike bits
"blanked out".

That is, a filter each quoted string, quotelike, regex, POD, and __DATA__ section
with a placeholder. The delimiters of this placeholder are the contents of the variable at the time
the filter is applied (normally). The remaining four bytes are a unique identifier for the
component being replaced.

This approach makes it comparatively easy to write code preprocessors without worrying about the
form or contents of strings, regexes, etc. For convenience, during a filtering operation,
Filter::Simple provides a package variable () that contains a
pre-compiled regex that matches any placeholder. Placeholders can be moved and re-ordered within
the source code as needed.

Once the filtering has been applied, the original strings, regexes, POD, etc. are re-inserted into the
code, by replacing each placeholder with the corresponding original component.

For example, the following filter detects concatentated pairs of strings/quotelikes and reverses the
order in which they are concatenated:

Thus, the following code:

Perl version 5.8.6 documentation - Filter::Simple

Page 6http://perldoc.perl.org

FILTER

FILTER_ONLY code => sub {...}

FILTER_ONLY

’code’

’code’

’code’
$;

"\034"

’code’
$Filter::Simple::placeholder

use Regexp::Common;
FILTER_ONLY
regex => sub { s/!\[/[^/g },
regex => sub { s/%d/$RE{num}{int}/g },
regex => sub { s/%f/$RE{num}{real}/g },
all => sub { print if $::DEBUG };

package DemoRevCat;
use Filter::Simple;

FILTER_ONLY code => sub { my $ph = $Filter::Simple::placeholder;
s{ ($ph) \s* [.] \s* ($ph) }{ $2.$1 }gx

};

use DemoRevCat;

my $str = "abc" . q(def);

print "$str\n";

Filtering only the code parts of source code

replaces

would become:

and hence print:

Filter::Simple generates a special subroutine for your module (see) which would
normally replace any subroutine you might have explicitly declared.

However, Filter::Simple is smart enough to notice your existing and Do The Right Thing with
it. That is, if you explicitly define an subroutine in a package that's using Filter::Simple, that

subroutine will still be invoked immediately after any filter you install.

The only thing you have to remember is that the subroutine be declared the filter
is installed. If you use to install the filter:

that will almost never be a problem, but if you install a filtering subroutine by passing it directly to the
statement:

then you must make sure that your subroutine appears before that statement.

Likewise, Filter::Simple is also smart enough to Do The Right Thing if you use Exporter:

Immediately after the filter has been applied to the source, Filter::Simple will pass control to Exporter,
so it can do its magic too.

Of course, here too, Filter::Simple has to know you're using Exporter before it applies the filter. That's
almost never a problem, but if you're nervous about it, you can guarantee that things will work
correctly by ensuring that your always precedes your
.

Perl version 5.8.6 documentation - Filter::Simple

Page 7http://perldoc.perl.org

my $str = q(def)."abc";

print "$str\n";

defabc

package Filter::TurnItUpTo11;

use Filter::Simple;

FILTER { s/(\w+)/\U$1/ };

package Filter::TurnItUpTo11;

use Filter::Simple sub{ s/(\w+)/\U$1/ };

package Switch;
use base Exporter;
use Filter::Simple;

@EXPORT = qw(switch case);
@EXPORT_OK = qw(given when);

FILTER { $_ = magic_Perl_filter($_) }

Using Filter::Simple with an explicit import subroutine

Using Filter::Simple and Exporter together

import
import

import
import

import

import
FILTER

use Filter::Simple

import use

use base Exporter use Filter::Simple

How it works

must before

The Filter::Simple module exports into the package that calls (or s it directly) -- such as
package "BANG" in the above example -- two automagically constructed subroutines -- and

-- which take care of all the nasty details.

In addition, the generated subroutine passes its own argument list to the filtering subroutine,
so the BANG.pm filter could easily be made parametric:

The specified filtering subroutine is called every time a is encountered, and passed all the
source code following that call, up to either the next (or whatever terminator you've set) or
the end of the source file, whichever occurs first. By default, any call must appear by itself
on a separate line, or it is ignored.

Damian Conway (damian@conway.org)

Perl version 5.8.6 documentation - Filter::Simple

Page 8http://perldoc.perl.org

How it works
FILTER use

import
unimport

import

use BANG
no BANG;

no BANG;

package BANG;

use Filter::Simple;

FILTER {
my ($die_msg, $var_name) = @_;
s/BANG\s+BANG/die ’$die_msg’ if \${$var_name}/g;

};

and in some user code:

use BANG "BOOM", "BAM"; # "BANG BANG" becomes: die ’BOOM’ if $BAM

Copyright (c) 2000-2001, Damian Conway. All Rights Reserved.
This module is free software. It may be used, redistributed

and/or modified under the same terms as Perl itself.

AUTHOR

COPYRIGHT

