
File::Glob - Perl extension for BSD glob routine

File::Glob::bsd_glob() implements the FreeBSD glob(3) routine, which is a superset of the POSIX
glob() (described in IEEE Std 1003.2 "POSIX.2"). bsd_glob() takes a mandatory argument,
and an optional argument, and returns a list of filenames matching the pattern, with
interpretation of the pattern modified by the variable.

Since v5.6.0, Perl's CORE::glob() is implemented in terms of bsd_glob(). Note that they don't share
the same prototype--CORE::glob() only accepts a single argument. Due to historical reasons,
CORE::glob() will also split its argument on whitespace, treating it as multiple patterns, whereas
bsd_glob() considers them as one pattern.

The POSIX defined flags for bsd_glob() are:

Force bsd_glob() to return an error when it encounters a directory it cannot open or read.
Ordinarily bsd_glob() continues to find matches.

Make bsd_glob() return an error (GLOB_NOSPACE) when the pattern expands to a size
bigger than the system constant (usually found in limits.h). If your system does not
define this constant, bsd_glob() uses or where
available (in that order). You can inspect these values using the standard extension.

Each pathname that is a directory that matches the pattern has a slash appended.

By default, file names are assumed to be case sensitive; this flag makes bsd_glob() treat case
differences as not significant.

Perl version 5.8.6 documentation - File::Glob

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use File::Glob ’:glob’;
@list = bsd_glob(’*.[ch]’);
$homedir = bsd_glob(’~gnat’, GLOB_TILDE | GLOB_ERR);
if (GLOB_ERROR) {
an error occurred reading $homedir

}

override the core glob (CORE::glob() does this automatically
by default anyway, since v5.6.0)
use File::Glob ’:globally’;
my @sources = <*.{c,h,y}>

override the core glob, forcing case sensitivity
use File::Glob qw(:globally :case);
my @sources = <*.{c,h,y}>

override the core glob forcing case insensitivity
use File::Glob qw(:globally :nocase);
my @sources = <*.{c,h,y}>

pattern
flags

flags

GLOB_ERR

GLOB_LIMIT

ARG_MAX
sysconf(_SC_ARG_MAX) _POSIX_ARG_MAX

POSIX

GLOB_MARK

GLOB_NOCASE

GLOB_NOCHECK

If the pattern does not match any pathname, then bsd_glob() returns a list consisting of only
the pattern. If is set, its effect is present in the pattern returned.

By default, the pathnames are sorted in ascending ASCII order; this flag prevents that sorting
(speeding up bsd_glob()).

The FreeBSD extensions to the POSIX standard are the following flags:

Pre-process the string to expand strings like csh(1). The pattern '{}' is left
unexpanded for historical reasons (and csh(1) does the same thing to ease typing of find(1)
patterns).

Same as but it only returns the pattern if it does not contain any of the special
characters "*", "?" or "[". is provided to simplify implementing the historic csh(1)
globbing behaviour and should probably not be used anywhere else.

Use the backslash ('\') character for quoting: every occurrence of a backslash followed by a
character in the pattern is replaced by that character, avoiding any special interpretation of the
character. (But see below for exceptions on DOSISH systems).

Expand patterns that start with '~' to user name home directories.

For convenience, is a synonym for
.

The POSIX provided , , and the FreeBSD extensions
, and flags have not been implemented in the Perl version

because they involve more complex interaction with the underlying C structures.

The following flag has been added in the Perl implementation for csh compatibility:

If is not in effect, sort filenames is alphabetical order (case does not matter)
rather than in ASCII order.

bsd_glob() returns a list of matching paths, possibly zero length. If an error occurred,
&File::Glob::GLOB_ERROR will be non-zero and will be set. &File::Glob::GLOB_ERROR is
guaranteed to be zero if no error occurred, or one of the following values otherwise:

An attempt to allocate memory failed.

The glob was stopped because an error was encountered.

In the case where bsd_glob() has found some matching paths, but is interrupted by an error, it will
return a list of filenames set &File::Glob::ERROR.

Note that bsd_glob() deviates from POSIX and FreeBSD glob(3) behaviour by not considering
and as errors - bsd_glob() will continue processing despite those errors, unless the

flag is set.

Perl version 5.8.6 documentation - File::Glob

Page 2http://perldoc.perl.org

GLOB_QUOTE

GLOB_NOSORT

GLOB_BRACE

{pat,pat,...}

GLOB_NOMAGIC

GLOB_NOCHECK
NOMAGIC

GLOB_QUOTE

GLOB_TILDE

GLOB_CSH

GLOB_CSH GLOB_BRACE | GLOB_NOMAGIC |
GLOB_QUOTE | GLOB_TILDE | GLOB_ALPHASORT

GLOB_APPEND GLOB_DOOFFS
GLOB_ALTDIRFUNC GLOB_MAGCHAR

GLOB_ALPHASORT

GLOB_NOSORT

$!

GLOB_NOSPACE

GLOB_ABEND

ENOENT ENOTDIR
GLOB_ERR

DIAGNOSTICS

and

Be aware that all filenames returned from File::Glob are tainted.

If you want to use multiple patterns, e.g. , you should probably throw
them in a set as in . This is because the argument to bsd_glob() isn't
subjected to parsing by the C shell. Remember that you can use a backslash to escape
things.

On DOSISH systems, backslash is a valid directory separator character. In this case, use of
backslash as a quoting character (via GLOB_QUOTE) interferes with the use of backslash as
a directory separator. The best (simplest, most portable) solution is to use forward slashes for
directory separators, and backslashes for quoting. However, this does not match "normal
practice" on these systems. As a concession to user expectation, therefore, backslashes
(under GLOB_QUOTE) only quote the glob metacharacters '[', ']', '{', '}', '-', '~', and backslash
itself. All other backslashes are passed through unchanged.

Win32 users should use the real slash. If you really want to use backslashes, consider using
Sarathy's File::DosGlob, which comes with the standard Perl distribution.

Mac OS (Classic) users should note a few differences. Since Mac OS is not Unix, when the
glob code encounters a tilde glob (e.g. ~user) and the flag is used, it simply
returns that pattern without doing any expansion.

Glob on Mac OS is case-insensitive by default (if you don't use any flags). If you specify any
flags at all and still want glob to be case-insensitive, you must include in the
flags.

The path separator is ':' (aka colon), not '/' (aka slash). Mac OS users should be careful about
specifying relative pathnames. While a full path always begins with a volume name, a relative
pathname should always begin with a ':'. If specifying a volume name only, a trailing ':' is
required.

The specification of pathnames in glob patterns adheres to the usual Mac OS conventions:
The path separator is a colon ':', not a slash '/'. A full path always begins with a volume name.
A relative pathname on Mac OS must always begin with a ':', except when specifying a file or
directory name in the current working directory, where the leading colon is optional. If
specifying a volume name only, a trailing ':' is required. Due to these rules, a glob like <*:> will
find all mounted volumes, while a glob like <*> or <:*> will find all files and directories in the
current directory.

Note that updirs in the glob pattern are resolved before the matching begins, i.e. a pattern like
"*HD:t?p::a*" will be matched as "*HD:a*". Note also, that a single trailing ':' in the pattern is
ignored (unless it's a volume name pattern like "*HD:"), i.e. a glob like <:*:> will find both
directories files (and not, as one might expect, only directories). You can, however, use
the flag to distinguish (without a file test) directory names from file names.

If the flag is set, all directory paths will have a ':' appended. Since a directory like
'lib:' is a valid path on Mac OS, both a leading and a trailing colon will be added,
when the directory name in question doesn't contain any colons (e.g. 'lib' becomes ':lib:').

The Perl interface was written by Nathan Torkington <gnat@frii.com>, and is released under the
artistic license. Further modifications were made by Greg Bacon <gbacon@cs.uah.edu>, Gurusamy
Sarathy <gsar@activestate.com>, and Thomas Wegner <wegner_thomas@yahoo.com>. The C glob
code has the following copyright:

Perl version 5.8.6 documentation - File::Glob

Page 3http://perldoc.perl.org

NOTES

AUTHOR

bsd_glob "a* b*"
bsd_glob "{a*,b*}"

GLOB_TILDE

GLOB_NOCASE

GLOB_MARK

GLOB_MARK

and

not relative

Copyright (c) 1989, 1993 The Regents of the University of California.
All rights reserved.

This code is derived from software contributed to Berkeley by

Perl version 5.8.6 documentation - File::Glob

Page 4http://perldoc.perl.org

Guido van Rossum.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this

software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE

LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

