
DynaLoader - Dynamically load C libraries into Perl code

This document defines a standard generic interface to the dynamic linking mechanisms available on
many platforms. Its primary purpose is to implement automatic dynamic loading of Perl modules.

This document serves as both a specification for anyone wishing to implement the DynaLoader for a
new platform and as a guide for anyone wishing to use the DynaLoader directly in an application.

The DynaLoader is designed to be a very simple high-level interface that is sufficiently general to
cover the requirements of SunOS, HP-UX, NeXT, Linux, VMS and other platforms.

It is also hoped that the interface will cover the needs of OS/2, NT etc and also allow pseudo-dynamic
linking (using at runtime).

It must be stressed that the DynaLoader, by itself, is practically useless for accessing non-Perl
libraries because it provides almost no Perl-to-C 'glue'. There is, for example, no mechanism for
calling a C library function or supplying arguments. A C::DynaLib module is available from CPAN sites
which performs that function for some common system types. And since the year 2000, there's also
Inline::C, a module that allows you to write Perl subroutines in C. Also available from your local CPAN
site.

DynaLoader Interface Summary

@dl_library_path

Perl version 5.8.6 documentation - DynaLoader

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

package YourPackage;
require DynaLoader;
@ISA = qw(... DynaLoader ...);
bootstrap YourPackage;

optional method for ’global’ loading
sub dl_load_flags { 0x01 }

@dl_library_path
@dl_resolve_using
@dl_require_symbols
$dl_debug
@dl_librefs
@dl_modules
@dl_shared_objects

Implemented in:
bootstrap($modulename) Perl
@filepaths = dl_findfile(@names) Perl
$flags = $modulename->dl_load_flags Perl
$symref = dl_find_symbol_anywhere($symbol) Perl

$libref = dl_load_file($filename, $flags) C
$status = dl_unload_file($libref) C
$symref = dl_find_symbol($libref, $symbol) C
@symbols = dl_undef_symbols() C
dl_install_xsub($name, $symref [, $filename]) C
$message = dl_error C

ld -A

The standard/default list of directories in which dl_findfile() will search for libraries etc.
Directories are searched in order: $dl_library_path[0], [1], ... etc

@dl_library_path is initialised to hold the list of 'normal' directories (, etc) determined by
(). This should ensure portability across a wide range of

platforms.

@dl_library_path should also be initialised with any other directories that can be determined
from the environment at runtime (such as LD_LIBRARY_PATH for SunOS).

After initialisation @dl_library_path can be manipulated by an application using push and
unshift before calling dl_findfile(). Unshift can be used to add directories to the front of the
search order either to save search time or to override libraries with the same name in the
'normal' directories.

The load function that dl_load_file() calls may require an absolute pathname. The dl_findfile()
function and @dl_library_path can be used to search for and return the absolute pathname for
the library/object that you wish to load.

@dl_resolve_using

A list of additional libraries or other shared objects which can be used to resolve any
undefined symbols that might be generated by a later call to load_file().

This is only required on some platforms which do not handle dependent libraries
automatically. For example the Socket Perl extension library () contains
references to many socket functions which need to be resolved when it's loaded. Most
platforms will automatically know where to find the 'dependent' library (e.g.,

). A few platforms need to be told the location of the dependent library
explicitly. Use @dl_resolve_using for this.

Example usage:

@dl_require_symbols

A list of one or more symbol names that are in the library/object file to be dynamically loaded.
This is only required on some platforms.

@dl_librefs

An array of the handles returned by successful calls to dl_load_file(), made by bootstrap, in
the order in which they were loaded. Can be used with dl_find_symbol() to look for a symbol in
any of the loaded files.

@dl_modules

An array of module (package) names that have been bootstrap'ed.

@dl_shared_objects

An array of file names for the shared objects that were loaded.

dl_error()

Syntax:

Error message text from the last failed DynaLoader function. Note that, similar to errno in unix,
a successful function call does not reset this message.

Implementations should detect the error as soon as it occurs in any of the other functions and
save the corresponding message for later retrieval. This will avoid problems on some
platforms (such as SunOS) where the error message is very temporary (e.g., dlerror()).

$dl_debug

Perl version 5.8.6 documentation - DynaLoader

Page 2http://perldoc.perl.org

/usr/lib

auto/Socket/Socket.so

/usr/lib/libsocket.so

Configure $Config{’libpth’}

@dl_resolve_using = dl_findfile(’-lsocket’);

$message = dl_error();

Internal debugging messages are enabled when $dl_debug is set true. Currently setting
$dl_debug only affects the Perl side of the DynaLoader. These messages should help an
application developer to resolve any DynaLoader usage problems.

$dl_debug is set to if defined.

For the DynaLoader developer/porter there is a similar debugging variable added to the C
code (see dlutils.c) and enabled if Perl was built with the flag. This can also
be set via the PERL_DL_DEBUG environment variable. Set to 1 for minimal information or
higher for more.

dl_findfile()

Syntax:

Determine the full paths (including file suffix) of one or more loadable files given their generic
names and optionally one or more directories. Searches directories in @dl_library_path by
default and returns an empty list if no files were found.

Names can be specified in a variety of platform independent forms. Any names in the form
are converted into , where is an appropriate suffix for the platform.

If a name does not already have a suitable prefix and/or suffix then the corresponding file will
be searched for by trying combinations of prefix and suffix appropriate to the platform:
"$name.o", "lib$name.*" and "$name".

If any directories are included in @names they are searched before @dl_library_path.
Directories may be specified as . Any other names are treated as filenames to be
searched for.

Using arguments of the form and is recommended.

Example:

dl_expandspec()

Syntax:

Some unusual systems, such as VMS, require special filename handling in order to deal with
symbolic names for files (i.e., VMS's Logical Names).

To support these systems a dl_expandspec() function can be implemented either in the
file or code can be added to the autoloadable dl_expandspec() function in

. See for more information.

dl_load_file()

Syntax:

Dynamically load $filename, which must be the path to a shared object or library. An opaque
'library reference' is returned as a handle for the loaded object. Returns undef on error.

The $flags argument to alters dl_load_file behaviour. Assigned bits:

(On systems that provide a handle for the loaded object such as SunOS and HPUX, $libref will
be that handle. On other systems $libref will typically be $filename or a pointer to a buffer

Perl version 5.8.6 documentation - DynaLoader

Page 3http://perldoc.perl.org

$ENV{’PERL_DL_DEBUG’}

-Ldir -lname

-DDEBUGGING

-lname

-Ldir

@filepaths = dl_findfile(@names)

@dl_resolve_using = dl_findfile(qw(-L/usr/5lib -lposix));

$filepath = dl_expandspec($spec)

$libref = dl_load_file($filename, $flags)

0x01 make symbols available for linking later dl_load_file’s.
(only known to work on Solaris 2 using dlopen(RTLD_GLOBAL))
(ignored under VMS; this is a normal part of image linking)

libname.* .*

dl_*.xs
DynaLoader.pm DynaLoader.pm

containing $filename. The application should not examine or alter $libref in any way.)

This is the function that does the real work. It should use the current values of
@dl_require_symbols and @dl_resolve_using if required.

(The dlopen() function is also used by Solaris and some versions of Linux, and is a common
choice when providing a "wrapper" on other mechanisms as is done in the OS/2 port.)

dl_unload_file()

Syntax:

Dynamically unload $libref, which must be an opaque 'library reference' as returned from
dl_load_file. Returns one on success and zero on failure.

This function is optional and may not necessarily be provided on all platforms. If it is defined, it
is called automatically when the interpreter exits for every shared object or library loaded by
DynaLoader::bootstrap. All such library references are stored in @dl_librefs by
DynaLoader::Bootstrap as it loads the libraries. The files are unloaded in last-in, first-out order.

This unloading is usually necessary when embedding a shared-object perl (e.g. one
configured with -Duseshrplib) within a larger application, and the perl interpreter is created and
destroyed several times within the lifetime of the application. In this case it is possible that the
system dynamic linker will unload and then subsequently reload the shared libperl without
relocating any references to it from any files DynaLoaded by the previous incarnation of the
interpreter. As a result, any shared objects opened by DynaLoader may point to a now invalid
'ghost' of the libperl shared object, causing apparently random memory corruption and
crashes. This behaviour is most commonly seen when using Apache and mod_perl built with
the APXS mechanism.

(The dlclose() function is also used by Solaris and some versions of Linux, and is a common
choice when providing a "wrapper" on other mechanisms as is done in the OS/2 port.)

dl_load_flags()

Syntax:

Designed to be a method call, and to be overridden by a derived class (i.e. a class which has
DynaLoader in its @ISA). The definition in DynaLoader itself returns 0, which produces
standard behavior from dl_load_file().

dl_find_symbol()

Syntax:

Perl version 5.8.6 documentation - DynaLoader

Page 4http://perldoc.perl.org

SunOS: dlopen($filename)
HP-UX: shl_load($filename)
Linux: dld_create_reference(@dl_require_symbols);

dld_link($filename)
NeXT: rld_load($filename, @dl_resolve_using)
VMS: lib$find_image_symbol($filename,$dl_require_symbols[0])

$status = dl_unload_file($libref)

SunOS: dlclose($libref)
HP-UX: ???
Linux: ???
NeXT: ???
VMS: ???

$flags = dl_load_flags $modulename;

$symref = dl_find_symbol($libref, $symbol)

Return the address of the symbol $symbol or if not found. If the target system has
separate functions to search for symbols of different types then dl_find_symbol() should
search for function symbols first and then other types.

The exact manner in which the address is returned in $symref is not currently defined. The
only initial requirement is that $symref can be passed to, and understood by, dl_install_xsub().

dl_find_symbol_anywhere()

Syntax:

Applies dl_find_symbol() to the members of @dl_librefs and returns the first match found.

dl_undef_symbols()

Example

Return a list of symbol names which remain undefined after load_file(). Returns if not
known. Don't worry if your platform does not provide a mechanism for this. Most do not need it
and hence do not provide it, they just return an empty list.

dl_install_xsub()

Syntax:

Create a new Perl external subroutine named $perl_name using $symref as a pointer to the
function which implements the routine. This is simply a direct call to newXSUB(). Returns a
reference to the installed function.

The $filename parameter is used by Perl to identify the source file for the function if required
by die(), caller() or the debugger. If $filename is not defined then "DynaLoader" will be used.

bootstrap()

Syntax:

bootstrap($module)

This is the normal entry point for automatic dynamic loading in Perl.

It performs the following actions:

locates an auto/$module directory by searching @INC

uses dl_findfile() to determine the filename to load

sets @dl_require_symbols to

executes an file if it exists (typically used to add to
@dl_resolve_using any files which are required to load the module on the
current platform)

calls dl_load_flags() to determine how to load the file.

calls dl_load_file() to load the file

Perl version 5.8.6 documentation - DynaLoader

Page 5http://perldoc.perl.org

undef

()

("boot_$module")

SunOS: dlsym($libref, $symbol)
HP-UX: shl_findsym($libref, $symbol)
Linux: dld_get_func($symbol) and/or dld_get_symbol($symbol)
NeXT: rld_lookup("_$symbol")
VMS: lib$find_image_symbol($libref,$symbol)

$symref = dl_find_symbol_anywhere($symbol)

@symbols = dl_undef_symbols()

dl_install_xsub($perl_name, $symref [, $filename])

auto/$module/$module.bs

calls dl_undef_symbols() and warns if any symbols are undefined

calls dl_find_symbol() for "boot_$module"

calls dl_install_xsub() to install it as "${module}::bootstrap"

calls &{"${module}::bootstrap"} to bootstrap the module (actually it uses the
function reference returned by dl_install_xsub for speed)

Tim Bunce, 11 August 1994.

This interface is based on the work and comments of (in no particular order): Larry Wall, Robert
Sanders, Dean Roehrich, Jeff Okamoto, Anno Siegel, Thomas Neumann, Paul Marquess, Charles
Bailey, myself and others.

Larry Wall designed the elegant inherited bootstrap mechanism and implemented the first Perl 5
dynamic loader using it.

Solaris global loading added by Nick Ing-Simmons with design/coding assistance from Tim Bunce,
January 1996.

Perl version 5.8.6 documentation - DynaLoader

Page 6http://perldoc.perl.org

AUTHOR

