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Packages and programs used in this tutorial

This tutorial uses the following packages in addition to the standard Python li-
brary:

� The Python numerics extension (aka NumPy) was written by Jim Hugunin
and is available from http://www.sls.lcs.mit.edu/jjh/numpy/. It contains
the modules Numeric, LinearAlgebra, and FFT.

� The module real that implements unlimited-precision real
number was written by Jurjen N.E. Bos and is available from
http://www.python.org/ftp/python/contrib/Math/real-accurate.pyar.

� The netCDF interface module is available from
http://starship.skyport.net/crew/hinsen/netcdf.html

� A collection of scientific modules is available from
http://starship.skyport.net/crew/hinsen/. It contains all the other
non-standard modules used in this tutorial.

The utility programs mentioned are

� The Simplified Wrapper and Interface Generator
(SWIG), written by David Beazly, is available at
http://www.cs.utah.edu/˜beazley/SWIG/swig.html.

Interactive Python: the ultimate desk calculator

Interactive use is very important in scientific computing.
Recommendations:

� For Emacs users: use the special Python mode for convenient interactive
work.

� The graphical user interface PTUI provides similar services without Emacs.

� Prepare an “interactive” module which imports everything you typically
need (e.g. “from Numeric import *”) and have it loaded automat-
ically for interactive sessions.
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Scientific data types and functions

Scientists work with descriptions of real-life objects and with mathematical ab-
stractions. Both can be represented by special data types.
Real-life objects:

� Physics: electrons, atoms, crystals, wave functions

� Chemistry: molecules, orbitals

� Biology: proteins, cells, plants, animals

� Meteorology: atmosphere

� General: experimental setups, lab equipment

Mathematical abstractions:

� Numbers: integers, quaternions, intervals

� Geometric: lines, vectors, transformations

� Algebraic: matrices, groups

� Mappings: functions, derivatives

Many common operations can be implemented as methods for such data types.
However, some operations are better expressed by a traditional procedural ap-
proach, e.g. mathematical functions.

Numbers

Built-in number types:

� Integers (int): 0, 1, 2, 3, -1, -2, -3

� Long integers (long): 0L, 1L, 2L, 3L, -1L, -2L, -3L

� Real numbers (float): 0., 1., -0.00367, -2.3e-5

� Complex numbers (complex): 1j, -3.j, 2.-4.5j

The precision of real and complex numbers is determined by the C compiler (type
double); usually 64-bit IEEE format, i.e. 15 decimal digits. Standard integers
are equivalent to the C type long, which usually has 32 bits or more. Long
integers can have arbitrary length.
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Standard arithmetic operations:

� Addition, subtraction: a+b, x-3.

� Multiplication, division: x*1j, 2./3.

� Modulus: 5%3, 3.5%2.8

� Power: x**2, (2.+3.j)**(4-3.5j)

When operands of unequal type are combined, the result is of the “higher” type
(integer–real–complex).

Caution: Division of two integers returns an integer, i.e. 1/3 is zero!

More number types can be provided by modules, e.g.:

� Unlimited precision real numbers in the module real.

� Quaternions in the module Quaternion.

Common mathematical functions in the module Numeric:
sqrt, log,log10, exp, sin, cos, tan, arcsin, arccos, arctan, sin,
cosh

Note: The standard library contains mathematical functions for real numbers in
the module math and for complex numbers in cmath. The functions from
Numeric can be applied to any number type.

Geometry

Class Vector in the module Vector implements vectors in 3D space:

from Vector import Vector

x = Vector(2.,3.,4.)
y = Vector(0.,0.,1.)
print x+y, x-y # addition, subtraction
print 2*y+x/3.5 # multiplication/division by scalars
print x*y # dot product
print x.cross(y) # cross product
print x.length() # length
print x.normal() # a normal vector parallel to x
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print x.angle(y) # the angle between x and y
print x[0], x[2] # accessing components

Vectors are immutable; the components cannot be changed.
The elements can be of any number type, e.g. also unlimited precision numbers
etc.

Class Tensor in the module Tensor implements tensors in 3D space:

from Tensor import Tensor
# Tensor constants: Kronecker and Levi-Civita tensor
from Tensor import delta, epsilon

rank1 = Tensor([1., 2., 3.])
rank2 = Tensor([ [0., 1., 1.],

[2., 1., 3.],
[5., 1., 8.] ])

# Arithmetic
print rank1+rank1
print rank2-rank2
print 3*rank2
# Tensor product; the result has rank 2
print rank1*rank1
# Transpose: reverse index order
print rank2.transpose()
# Contraction over last index of first
# and first index of second tensor
print rank2.dot(rank1)
# Some operations for rank 2 tensors only:
print rank2.trace()
print rank2.symmetricalPart()
print rank2.asymmetricalPart()
print rank2.eigenvalues()

The module Transformation contains classes Translation and
Rotation, which describe transformations in 3D space:

from Transformation import Translation, Rotation
from Vector import Vector
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from Numeric import pi

# Translation by displacement vector
t = Translation(Vector(0.,0.,2.5))
# Rotation by axis and angle
r = Rotation(Vector(1.,0.,0.), pi/2)
# Composition: first r then t
combined = t*r
# inversion
inverse = combined.inverse()
# Application to a vector
x = Vector(2., 1.5, 3.)
x_transformed = combined(x)
# Extract translational part
t = combined.translation()
# Extract rotational part
r = combined.rotation()
# Get displacement vector
v = t.displacement()
# Get axis and angle
axis, angle = r.axisAndAngle()

Some applications:

� Rotate a point p (a vector object) around a line parallel to the x-axis through
the point o (another vector object) by the angle ��� (���):

transformation = Translation(o) * \
Rotation(Vector(1,0,0), pi/4.) * \
Translation(-o)

p = transformation(p)

� If you rotate by ��� around the x-axis and then by ��� around the z-axis,
what’s the axis and angle of the total rotation?

degrees = pi/180.
total = Rotation(Vector(0,0,1), 75*degrees) * \

Rotation(Vector(1,0,0), 20*degrees)
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axis, angle = total.axisAndAngle()
print "Axis: ", axis
print "Angle: ", angle/degrees

Arrays

Arrays are multidimensional sequence objects. Some applications:

� Linear algebra (vectors, matrices)

� Experimental data (tables)

� Values on a grid (e.g. finite element methods)

Arrays are a very powerful data type with many special operations. They are
covered in detail in a separate tutorial. Only some basic operations are presented
here.
Arrays and array functions are implemented in the module Numeric:

from Numeric import *

# A one-dimensional array of reals
a = array([0., 2., -1.5, -0.3])

# A two-dimensional integer array
b = array([ [ 1, -4, 0, 3],

[-6, 2, -1, 5] ])

# Arithmetic
print a/1.5 # divide each element by 1.5
print b-3 # subtract 3 from each element
print a*b # combine a with each row of b

# Dot product
print dot(b, a)

# Indexing
print a[0], a[2:4] # just like lists
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print a[1::2], a[::-1] # third number indicates stride
print b[0] # only first index
print b[1, 3], b[:, 3] # multidimensional indices

# Transpose (reverse axis order)
print transpose(b)

The mathematical functions from the module Numeric can be applied directly
to arrays.
Arrays can often be interchanged with nested lists. However, all elements of an
array are of the same type (integer, float, complex), except for general object
arrays, which are not treated here.
Array operations are very much faster than equivalent operations on lists with
explicit loops!

Caution: Subarrays extracted by indexing share their data space with the original
array, i.e. changes to one of the arrays will affect the other. This is an
intentional and useful feature, but it also leads to frequent errors.

Linear Algebra

The module LinearAlgebra contains the most common operations in linear
algebra. It is based on the LAPACK library. Vectors and matrices are represented
by arrays of rank 1 and 2. Arguments can be integer, real, or complex, with integer
arrays being converted to real.

Linear equations
Solution of linear equations uses LU decomposition and back substitution.

import Numeric; N = Numeric
import LinearAlgebra; LA = LinearAlgebra

a = N.array([ [1., 2.],
[3., 4.] ])

b = N.array([7., 8.])
x = LA.solve_linear_equations(a, b)

# Several right-hand sides:
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b = N.array([ [ 0., -2., -5.],
[ 7., 3., 2.] ])

x = LA.solve_linear_equations(a, b)

Matrix inversion is handled by supplying an appropriate set of right-hand side
vectors.

a_inv = LA.inverse(a)

Generalized inverses are calculated via singular value decomposition (see below).

b_inv = LA.generalized_inverse(b)

Eigenvalue problems
Eigenvalues are returned in a rank 1 array, eigenvectors in a rank 2 array with
one eigenvector per row. For non-symmetric arrays, the right eigenvectors are
calculated. Use the transpose to get the left eigenvectors.

ev = LA.eigenvalues(a)
ev, vectors = LA.eigenvectors(a)

Singular value decomposition returns three arrays u, s and vt. Array s has rank
1 and contains the singular values, i.e. the diagonal elements of the singular value
matrix �. The other two arrays have rank 2 and represent the orthogonal transfor-
mation matrices. The original matrix is equal to U � � � V T .

u, s, vt = LA.singular_value_decomposition(b)

Fourier Transforms

The module FFT contains Fast Fourier Transform routines, based on FFTPACK:

import Numeric; N = Numeric
import FFT

x = N.array([0., 1., 2., 3., 2., 1.], N.Complex)
x_fft = FFT.fft(x)
x_test = FFT.inverse_fft(x_fft)
print x_test
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x = N.array([ [0., 1., 0., 1.],
[1., 0., 1., 0.],
[0., 1., 0., 1.],
[1., 0., 1., 0.] ], N.Complex)

x_fft = FFT.fft2d(x)
x_test = FFT.fft2d(x_fft)/(x.shape[0]*x.shape[1])
print x_test

Statistics

The module Statistics contains elementary statistics functions that work on
any sequence object (lists, arrays, etc.):

import Statistics
import RandomArray
import Gnuplot

data = RandomArray.random(500)

print Statistics.average(data)
print Statistics.variance(data)
print Statistics.standardDeviation(data)
Gnuplot.plot(Statistics.histogram(data, 50))

Parameter fitting

The module LeastSquares implements the Levenberg-Marquardt algorithm
for general non-linear least-squares fits.
First step: define the function to be fitted as a Python function. It can depend on
any number of variables and parameters. It is called with two arguments: a tuple
of parameters, and a tuple with the values of the variables. The return value must
be a number.
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Example: The function eax�by could be written as

import Numeric

def two_exponentials(parameters, values):
a, b = parameters
x, y = values
return Numeric.exp(a*x+b*y)

The data must be prepared as a sequence (e.g. a list) of data points. Each data
point is a sequence of length two or three. Its first element specifies the inde-
pendent variables (x and y in the example) as a tuple. The second element is the
measured value at this point, a number. The optional third element (default 1.) is
the statistical variance (the inverse of the weight) of the data point.

Finally, an initial estimate for the parameters must be provided. Then the fitting
procedure can be started:

from LeastSquares import leastSquaresFit

data = [ [(0., 1.), 20.],
[(1., 0.), 7.],
[(2., 1.), 1100.],
[(0., 2.), 400.] ]

initial = (1, 1)

param, error = leastSquaresFit(two_exponentials,
initial, data)

print "Fitted parameters: ", param
print "Fit error: ", error

The fit procedure uses automatic derivatives to calculate the exact derivatives
of the model for local linearization. See the modules Derivatives and
FirstDerivatives for details.

Interpolation

Data defined on a grid can be interpolated to yield a continuous mathematical
function defined at any point. The module Interpolation defines a class that
represents such a function.
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from Interpolation import InterpolatingFunction
import Numeric

grid = Numeric.array([0., 1., 2., 3., 4.])
values = Numeric.sqrt(grid)
f = InterpolatingFunction((grid,), values)

The first argument is a tuple, because functions of several variables need more
than one grid axis. Interpolating functions can be defined for any number of
variables, and the values can be multidimensional as well. For example, a vector
field (a three-component function of three variables) would have three grid axes
and a rank 4 value array with a length of three for the last dimension.
An interpolating function can be called just like any other function:

print f(1.), f(2.5), f(3.1415926)

There are also differentiation and integration operations, which return another
interpolating function. The definite integral returns either a function or a number,
if no independent variables remain:

f_deriv = f.derivative()
f_int = f.integral()
f_defint = f.definiteIntegral()

For functions of several variables, all these operations take an optional argument
indicating the variable; the default is 0.
To obtain the definite integral on a subinterval, create an interpolating function
defined on this subinterval by

f_subinterval = f.selectInterval(first, last)

Example with two variables

from Interpolation import InterpolatingFunction
import Numeric

grid = Numeric.array([0., 1., 2., 3., 4.])
values = Numeric.exp(Numeric.add.outer(grid, 0.5*grid))
f = InterpolatingFunction((grid, grid), values)
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f_diff_y = f.derivative(1)
f_diff_xy = f_diff_y.derivative(0)

print f_diff_xy(1.5, 2.5)

Example of a two-component function

from Interpolation import InterpolatingFunction
import Numeric; N = Numeric

grid = N.array([0., 1., 2., 3., 4.])
values = N.transpose(N.array([N.sin(0.1*grid), N.cos(0.1*grid)]))
f = InterpolatingFunction((grid,), values)

print f(3.5)

Polynomial fits
A polynomial of a given order can be obtained from the grid data by least-
squares fitting. Polynomials are defined by class Polynomial in module
Polynomial.

from Interpolation import InterpolatingFunction
import Numeric

grid = Numeric.array([0., 1., 2., 3., 4.])
values = Numeric.sqrt(grid)
f = InterpolatingFunction((grid,), values)
f_polynomial = f.fitPolynomial(3)

print Numeric.sqrt(3.4), f(3.4), f_polynomial(3.4)

Polynomials can be fitted to functions of several variables, but the values of the
functions must be simple numbers.

Define your own data types

Programs become much simpler if problem-specific data types are available.
Since their definition is easy in Python, it is usually a good investment.
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Here is a simplified definition of class Vector. The real one has more methods
and some optimizations.

import Numeric

class Vector:

def __init__(self, x, y, z):
self.array = Numeric.array([x,y,z])

def __add__(self, other):
sum = self.array+other.array
return Vector(sum[0], sum[1], sum[2])

def __mul__(self, other):
return Numeric.dot(self.array, other.array)

def length(self):
return Numeric.sqrt(self*self)

def __repr__(self):
return ’Vector(%f, %f, %f)’ % tuple(self.array)

Note: Python code tends to be readable, so study some modules of interest to you
to learn about implementation strategies!

Getting data into and out of files

The basics: file I/O to and from strings
Writing to a file:

file = open(’an_example’, ’w’)
file.write(’This is the first line.\n’)
file.write(’This is the second line.\n’)
file.write(’This is ’)
file.write(’the last line’)
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file.write(’ of this file.\n’)
file.close()

Reading from a file line by line:

file = open(’an_example’, ’r’)
while 1:

line = file.readline()
if not line: break
# print without the final newline
print line[:-1]

file.close()

Note: Like C, but unlike Fortran, Python uses a stream-based I/O model. A file is
a sequence of characters; the line structure is indicated by special control
characters (’\n’). Fortran I/O is record-based: each read or write state-
ment treats one record (which is one line for text files).

“Value added” text files
The module TextFile defines a class TextFile which adds some conve-
nience options to bare Python files:

� transparent handling of compressed files: add the extension ’.Z’ or
’.gz’ to the file name and forget about compression

� input files can be treated as a sequence of lines

Example for writing:

from TextFile import TextFile

file = TextFile(’an_example.gz’, ’w’)
file.write(’This is the first line.\n’)
file.write(’This is the second line.\n’)
file.write(’This is ’)
file.write(’the last line’)
file.write(’ of this file.\n’)
file.close()
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And for reading:

from TextFile import TextFile

for line in TextFile(’an_example.gz’):
print line[:-1]

Output formatting

Main tools: string operations
Built-in: string concatenation, string indexing, number conversion

Example: transform a list of number pairs into a string

s = ’’
for pair in list:

s = s + ‘pair[0]‘ + ’ ’ + ‘pair[1]‘ + ’\n’

Or with an explicit format for real numbers:

s = ’’
for pair in list:

s = s + ’%7.2f %7.2f\n’ % tuple(pair)

Output formatting with the percent operator is almost identical to the C func-
tion printf and similar to output with format specifications in Fortran. See the
Python manual for a detailed description of formatting options.
More useful operations (justification, upper-/lowercase conversion) are imple-
mented in the standard library module string; see the Python library manual
for details.

Parsing input files

Main tasks:

� Finding the relevant information

� Converting it to convenient Python data structures

Most common first step: split the line into “words”:
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import string
words = string.split(line)

This splits the line at each white space region and returns a list of the word strings
with surrounding spaces removed.
For finding specific key words, use string comparison and, if desired, case folding:

if string.lower(words[0]) == ’result:’:
result = string.atof(words[1])

The functions atof and atoi in the module string convert strings to real
numbers and integers.
More complicated search methods are rarely needed, but are available in the forms
of regular expressions; see the Python library manual for details.

Example: Read the output protocol of some iterative procedure and collect the
data from lines of the form “result of step N: X” in a list.

from TextFile import TextFile
import string

data = []
for line in TextFile(’output’):

words = string.split(string.lower(line))
if words[:3] == [’result’, ’of’, ’step’]:

data.append(string.atof(words[4]))

Example: Return everything between the lines containing “Matrix:” and “END”
as an array.

from TextFile import TextFile
import Numeric, string

data = []
in_matrix = 0
for line in TextFile(’output’):

if line[:3] == ’END’: break
if line[:7] == ’Matrix:’:

in_matrix = 1

18



elif in_matrix:
words = string.split(line)
numbers = map(string.atof, words)
data.append(numbers)
data = Numeric.array(data)

Fortran-style fixed-format files

Fortran programs treat text files very differently: items are identified by their po-
sition in the line, not by surrounding space. The layout of a line is defined by a
format specification, such as ’A3,2I5,1X,4F15.4’.
The module FortranFormat defines two classes to deal with such files. They
allow Fortran-style input and output using the commonly used format specifica-
tions (A, D, E, F, G, I, and X formats, plus string constants for output). Repetition
of individual formats and groups in parentheses is supported.

Input: from string to data

from FortranFormat import FortranFormat, FortranLine
s = ’ 59999’
format = FortranFormat(’2I4’)
line = FortranLine(s, format)

The result is a special sequence object containing the data in appropriate types. In
the example, line has two integer elements with values 5 and 9999.

Output: from a list of data to a string

from FortranFormat import FortranFormat, FortranLine
format = FortranFormat(’2D15.5’)
line = FortranLine([3.1415926, 2.71828], format)
print str(line)

Note: The second argument of FortranLine can also be the original format
string. However, for repeated use of the same format this is much slower,
because parsing the format string is expensive.
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Binary files

Caution: The format of binary files often depends on the machine being used and
in the case of Fortran files also on the compiler or run-time library.

Binary files require a different mode specification: ’rb’ for reading, ’wb’ for
writing. I/O still works via strings, which are interpreted as a sequence of bytes.

Note: On some operating systems there is no real difference between ’r’ and
’rb’ or ’w’ and ’wb’. But the correct form is needed to ensure porta-
bility.

Output: as for text files using file.write(string).
Input:

file = open(’a_binary_file’, ’rb’)
data1 = file.read(4) # read four bytes
data2 = file.read(11) # read 11 bytes
rest = file.read() # read the rest of the file
file.close()

Each read operation reads at most the number of bytes indicated, but less if the
end of the file has been reached.
Conversion between byte sequences in strings and Python data objects is handled
by the module struct. It uses a format string to interpret the binary data, in
which each letter stands for one binary data object (’i’ for integer, ’f’ for float,
...). See the Python library manual for a full list.

Caution: To be precise, each letter stands for a C data type, e.g. ’i’ stands
for the C type int. The number of bytes corresponding to the C type
depends on the machine and compiler being used.

Conversion from data objects to a binary string: struct.pack(format,
data1, data2, ...)
Conversion from a binary string to a tuple of data objects:
struct.unpack(format, binary string)
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Example: Read a Fortran binary file and print the length (in bytes) of each record,
assuming the file layout used by most Unix compilers.

import struct

file = open(’a_fortran_binary_file’, ’rb’)
while 1:

# read the record length field
data = file.read(4)
if not data: break
record_length = struct.unpack(’l’, data)[0]
print "Record of length ", record_length
# skip the rest of the record
data = file.read(record_length+4)

file.close()

Standard file formats

Some text and binary file formats are widely used. They can be used very effi-
ciently if a module is written that presents the data to its users in a convenient
way.
Examples:

� The module PDB reads and writes macromolecular configurations in the
format of the Protein Data Bank. It presents the data to client code in a
hierarchy of objects: chains – residues – atoms. These objects can easily be
inspected or changed without detailed knowledge of the file format.

� The module VRML writes 3D scenes in the Virtual Reality Modeling Lan-
guage. Client modules specify the objects by geometrical and visual infor-
mation, e.g. “a green sphere of radius 5 at point (1., 2., 0.)”.

Further advantage: compatible modules can encode the same information in dif-
ferent standard formats.

netCDF files

The netCDF format is a popular format for binary files. It is portable between ma-
chines and self-describing, i.e. it contains the information necessary to interpret
its contents. A free library provides convenient access to these files.
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The module netcdf provides a Python interface to the netCDF library which
presents the data in the form of objects that behave very much like arrays.
A netCDF file contains any number of dimensions and variables, both of which
have unique names. Each dimension has a value (a positive integer), and each vari-
able has a shape defined by a set of dimensions, and optionally attributes whose
values can be numbers, number sequences, or strings. One dimension of a file
can be defined as “unlimited”, meaning that the file can grow along that direction.
Some attributes are standardized by convention, e.g. the attribute unit which
defines physical units. There are also global attributes attached to the file instead
of individual variables.
The Python interface defines a file and a variable object type. Their netCDF at-
tributes become Python attributes. File objects also have two special attributes,
dimensions and variables, whose values are dictionaries. Variable objects
are accessed by indexing and support all index options of arrays. The result of an
indexing operation is an array.
The unlimited dimension needs a special treatment; standard arrays don’t change
their size. The shape of a variable object always reflects the current size; it is
updated whenever the shape attribute is explicitly requested. Indexing operations
use the information from the last shape enquiry.

Example: writing a netCDF file

from netcdf import NetCDFFile
import Numeric

# Create a file
file = NetCDFFile(’test.nc’, ’w’)
# Set the title
file.title = "Demo file"
# Create two dimensions
file.createDimension(’n1’, 10)
file.createDimension(’n2’, 20)
# Create a variable and set it to zero
foo = file.createVariable(’foo’, Numeric.Float,

(’n1’, ’n2’))
foo[:] = 0.
# Close the file
file.close()
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Example: print all variables in a netCDF file

from netcdf import NetCDFFile

file = NetCDFFile(’test.nc’, ’r’)
for name, var in file.variables.items():

print "Name: ", name
print "Shape: ", var.shape
print "Value: "
print var[:]

file.close()

Plotting and visualization

Plotting via Gnuplot

The module Gnuplot provides a very basic interface to the public-domain plot-
ting program Gnuplot. It is meant for interactive plotting jobs, not for production-
quality plotting.
The function plot produces a 2D line plot in a newly opened window. It takes
any number of arguments, each of which is one dataset. All datasets are plotted
together.
A dataset can be any sequence of points, and a point is either a number (y value) or
a pair �x� y� of numbers. If there are no x values in the dataset, they are assumed
to be the integers from � to the number of points. Typical dataset descriptions are
lists of numbers, lists of lists/tuples, or arrays.
An optional keyword argument file=filename generates the plot in the named
file in PostScript format, rather than opening a window.

Example:

from Gnuplot import plot
import Numeric; N = Numeric

x = 0.1*N.arrayrange(100.)
y = N.sin(x)
dataset = N.transpose(N.array([x, y]))
plot(dataset)
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Visualization with VRML

The Virtual Reality Modeling Language (VRML) is a standard format for describ-
ing arrangements of 3D objects with various visual properties. VRML viewers
are available for all common platforms, and many of them are free. This makes
VRML a good solution for flexible low-cost visualization.
The module VRML contains definitions of various geometric objects that can be
put together to form a VRML scene. There are also definitions for common colors
and for color scales. Assembled scenes can be written to a VRML file (which can
be compressed) or fed directly to a VRML viewer, whose name must be indicated
by the environment variable VRMLVIEWER.
The available VRML objects are:

� Sphere(center, radius) creates a sphere.

� Cube(center, edge) creates a cube centered around a given point.
The edges are oriented along the x, y, and z axes.

� Cylinder(point1, point2, radius) creates a cylinder whose
axis runs from point1 to point2 with the radius specified.

� Cone(point1, point2, radius) creates a cone whose base is a
circle around point1 with radius radius and whose tip is at point2.

� Line(point1, point2) creates a line from point1 to point2.

� Arrow(point1, point2, radius) creates an arrow from point
to point2 with a shaft radius of radius.

All objects can have one or more properties that affect their appearance. The most
important property is the material, which defines color, transparency, reflectivity,
etc. In this tutorial, only diffuse materials in various predefined colors are used,
i.e. non-transparent non-reflecting materials. See a book on VRML for the full
possibilities.
The material is specified with the keyword argument material=material.
The value is a object of type Material, e.g. created by
DiffuseColor(color name).

Example: display a black line through a sequence of points

import VRML
from Vector import Vector
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import Numeric; N = Numeric

# Make points that form a spiral
points = []
for t in N.arrayrange(0., 10., 0.1):

x = N.sin(2*t)
y = N.cos(2*t)
z = t
points.append(Vector(x, y, z))

# Create an empty scene and black material
scene = VRML.Scene([])
line_material = VRML.DiffuseMaterial(’black’)

# Create the lines and put them into the scene
for i in range(len(points)-1):

scene.addObject(VRML.Line(points[i],
points[i+1],
material=line_material))

# View the scene
scene.view()

Example: display a scalar function on a grid by color coding

import VRML
from Vector import Vector
import Numeric; N = Numeric

# Define grid and calculate function
grid = N.arrayrange(10.)
values = N.sin(grid) * \

N.sin(grid[:, N.NewAxis]) * \
N.cos(grid[:, N.NewAxis, N.NewAxis])

# Find range and define color scale
high = N.maximum.reduce(N.ravel(N.fabs(values)))
scale = VRML.SymmetricColorScale(high)
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# Create scene and objects
scene = VRML.Scene([])
for i1 in range(len(grid)):

for i2 in range(len(grid)):
for i3 in range(len(grid)):

x = Vector(grid[i1], grid[i2], grid[i3])
m = VRML.Material(diffuse_color = scale(values[i1, i2, i3]))

scene.addObject(VRML.Sphere(x, 0.2, material = m))

# View
scene.view()

Interfacing to external programs and subroutine li-
braries

Often existing code must be incorporated into a Python program.
Strategies:
For executable programs: generate input files in Python, run external program,
parse output files. Wrap everything in a class or function.
For subroutine libraries: write (or generate with suitable tools) a Python interface
module (C module) that is linked with the library.

Wrapping external programs

Temporary files
Files used for passing information between programs should be temporary and
deleted automatically at the end. Problem: we need a filename which is guaran-
teed to be unused.
The module tempfile contains the function mktemp which returns a filename
in a special directory for temporary files which does not correspond to any existing
file.
At the end of the processing, the file can be deleted by calling the function
unlink in the module os.
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Running programs
The module os provides several functions that start external programs.

Caution: Running external programs involves operating system calls that may
not be available on all systems. The examples have been tested on Unix
systems only.

The function os.system(command) executes the command (a string) as if
it had been typed into a command interpreter (/bin/sh on Unix systems). The
command can contain input and output redirections and even run several programs
in a pipe. The function will return when the external command finishes.

The function os.popen(command, mode) also executes the specified com-
mand by passing it to the command interpreter. However, the command runs in
parallel to the Python process and is linked to it by a pipe, which is the return
value of the function. If the mode is ’w’, the Python program can write to the
command and thereby provide input to it. If the mode is ’r’, the Python program
can read the output of the program from the pipe.

Caution: These functions should be used with care. The commands can be any-
thing, including ’/bin/rm -rf *’. There is no protection against
mistakes.

Example: pass a text string to an external editor and return the modified version

import os
import tempfile

editor = ’xedit’

def edit(text):
filename = tempfile.mktemp()
file = open(filename, ’w’)
file.write(text)
file.close()
os.system(editor + ’ ’ + filename)
file = open(filename)
text = file.read()
file.close()
os.unlink(filename)
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return text

Running programs in the background
Often external programs should continue to run in parallel to the Python process,
for example visualization programs.
Starting a parallel process is a four-step procedure:

1. Create a second process with os.fork(). The second process will also
run the Python program, but will receive a different return value.

2. Use os.system or os.popen in the second process to run the external
program.

3. Clean up, e.g. delete temporary files.

4. Terminate the second process with os. exit(0).

Example: run the program defined by the environment variable VRMLVIEWER
in the background:

import os
vrml_file = ’temp.wrl’
if os.fork() == 0:

os.system(os.environ[’VRMLVIEWER’] + ’ ’ + vrml_file +
’ 1> /dev/null 2>&1’)

os.unlink(vrml_file)
os._exit(0)

Wrapping libraries by C extension modules

Python modules can be written in C instead of Python, such modules are called C
extension modules. They are covered in detail in other tutorials. C extension mod-
ules can be used to provide access to existing subroutine libraries from Python.
This approach has been used for LAPACK and FFTPACK in the numerics exten-
sion.
There are two approaches for generating C extension modules to wrap libraries:

� Write the extension module manually. This offers maximum flexibility and
opportunities for optimization, but is doable only for small modules.
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� Use an automatic interface generator to generate the C module.

The most capable interface generator for Python is called SWIG and is covered in
detail by a separate tutorial.

The following example (from the SWIG manual) shows how a small C library is
wrapped by an extension module. The C library is:

File example.c

#include <time.h>

double My_variable = 3.0;

int fact(int n) {
if (n <= 1) return 1;
else return n*fact(n-1);

}

int mod(int n, int m) {
return (n % m);

}

char *get_time() {
long ltime;
time(&ltime);
return ctime(&ltime);

}

The SWIG input file specifies the name of the module to be generated and the
prototypes of the C functions and variables:

File example.i

%module example

extern double My_variable;
extern int fact(int);
extern int mod(int n, int m);
extern char *get_time();
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Typing

swig -python example.i

generates the interface module in the file example wrap.c. This can now be com-
piled like any other C extension module.
Assuming that shared libraries are supported, the compilation procedure requires
only a small module specification file:

File Setup

*shared*
example example_wrap.c example.c

Also needed is the file Misc/Makefile.pre.in from the Python distribution. Two
more commands create a ready-to-load dynamic library:

make -f Makefile.pre.in boot
make

The new module can be used immediately, e.g. by running the following test
program:

File example.py

from example import *
print get_time()
print "My Variable = ", cvar.My_variable
for i in range(0,14):

n = fact(i)
print i, "factorial is ", n

for i in range(1,250):
for j in range(1,250):

n = mod(i,j)
cvar.My_variable = cvar.My_variable + n

print "My_variable = ", cvar.My_variable
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Fortran libraries
Most operating systems/compilers allow to mix C and Fortran code in programs.
This makes it possible to call Fortran libraries from C extension modules and
hence wrap Fortran libraries into Python.

Caution: The details of mixed C/Fortran programming depend on the compiler
Check your Fortran compiler manual for relevant information.

There is currently no automatic interface generator for Fortran libraries; the C
tools must be used. Two alternatives:

� Construct C prototypes that are compatible with your Fortran libraries and
feed them to SWIG. The prototypes will be compiler dependent.

� Write a C wrapper around your Fortran code and apply SWIG to it. The
added C layer can be used to hide compiler dependencies (via the C prepro-
cessor) and to modify arguments to the Fortran code if that seems appropri-
ate.

Writing C modules for efficiency

Another use for C extension modules is the implementation of time-critical code
that would be too slow in Python.

Note: Time-critical code typically makes up only a small part of a complete pro-
gram (5-10%). There is no reason to write a large program completely in
a low-level language just because a small part requires it. Mixed-language
Python/C programming offers many advantages.

C extension modules written from scratch for integration in Python code can use
the interpreter as a utility library for various operations (I/O, error handling, mem-
ory allocation, etc.).

Profiting from dynamic libraries
On most systems C extension modules are compiled into dynamic libraries which
are loaded when the module is imported. This permits dynamic C code genera-
tion: a Python module can generate or modify a C program file, compile it into a
dynamic library, and immediately import and execute it.
Applications:

� Special-purpose compilers for efficiency
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� Automatic recompilation of libraries that depend on compile-time parame-
ters (e.g. Fortran libraries with static dimensions).

� Run-time choice between different implementations.

Scientific libraries and applications

Plotting and graphics:

� An interface to the plotting library GIST (part of the Yorick
package, see ftp://icf.llnl.gov/pub/Yorick/) is available at
ftp://icf.llnl.gov/pub/python/gistmodule.tar.gz.

� The DISLIN plotting package at http://www.mpae.gwdg.de/dislin/dislin.html
comes with a Python interface for some systems (binaries for Python 1.4
only, no source code).

� The Python Imaging Library (PIL) provides pixel-oriented graphics opera-
tions. See http://www.python.org/sigs/image-sig/Imaging.html.

� An OpenGL interface permits the generation of 3D visualizations. See
http://www.python.de/.

Mathematical and scientific libraries and applications:

� An interface to the Khoros package is available at
http://windchime.arc.nasa.gov/˜grendel/pkim.html.

� An interface to the Simple Algebraic Math Library (SAML) is available at
ftp://topo.math.u-psud.fr/pub/bousch/.

� The Molecular Modeling Toolkit (MMTK)is available at
http://starship.skyport.net/crew/hinsen/mmtk.html.

Check also the collection of mathematical code at
http://www.python.org/ftp/python/contrib/Math/INDEX.
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